Saturation-tolerant average consensus with controllable rates of convergence

Solmaz S. Kia, Jorge Cortés, Sonia Martínez

Mechanical and Aerospace Engineering Dept. University of California San Diego http://tintoretto.ucsd.edu/solmaz

SIAM Conference on Control and Its Applications July 9, 2013

Static Average Consensus

• Autonomous and cooperative agents

$$\dot{x}^i = -c^i, \quad x^i, c^i \in \mathbb{R}$$

- *xⁱ*: agreement state - *cⁱ*: driving command

• Design $c^i = f(i, \text{neighbors}) \text{ s.t. } \forall i \in \{1, \dots, N\}$

$$x^{i}(t) \rightarrow rac{1}{N} \sum_{j=1}^{N} u^{j}, t \rightarrow \infty$$

Applications: coordination and information fusion

- multi-robot coordination
- distributed optimization

- distributed fusion in sensor networks
- smart meters

Static average consensus is one of the most studied problems in networked systems

- Inspired by analysis of group behavior (flocking) in nature: Vicsek 95, Reynolds 87, Toner and Tu 98
- Mathematical models of static consensus and averaging: Jadbabaie et al. 03, Olfati Saber and Murray 03 and 04, Boyd et al. 05

Previous literature:

- Focus on convergence to consensus: time delay, switching, noisy links
- Focus on increase rate of convergence,
- No explicit attention to rate of convergence of individual agents
- No explicit attention to limited control authority

$$\dot{x}^i = -c^i, \quad x^i, c^i \in \mathbb{R}$$

- xⁱ: Agreement state - cⁱ: Driving command

Design $c^i = f(i, \text{ neighbors})$ s.t.

• $x^i \rightarrow \frac{1}{N} \sum_{j=1}^{N} u^j$, $t \rightarrow \infty$, with rate β^i

- Agents with limited control authority opt for slower rate
- · Consistent response over different communication topologies
- Control over time of arrival

2)
$$x^i o rac{1}{N} \sum_{j=1}^N u^j$$
, $t \to \infty$, even though $\dot{x}^i = -\operatorname{sat}_{\bar{c}^i}(c^i)$

Average consensus is achieved despite limited control authority

Communication topology: weighted digraph $\mathcal{G}(V, \mathcal{E}, A)$

- Node set: $V = \{1, \cdots, N\}$
- Edge set: $\mathcal{E} \subseteq V \times V$
- Weights (for $i, j \in \{1, \ldots, N\}$)

$$a_{ij} > 0 \text{ if } (i,j) \in \mathcal{E}, \ a_{ij} = 0 \text{ if } (i,j) \notin \mathcal{E}$$

- Strongly connected: $i \rightarrow j$ for any i, j
- Weight-balanced:

$$\sum_{j=1}^N a_{ji} = \sum_{j=1}^N a_{ij}, \hspace{0.2cm} i \in V$$

• Laplacian matrix: $L = D^{out} - A$

$$A: \mathsf{Adjacency\ matrix}; \quad D: \mathsf{out\ degree}, \ D_{ii}^{\mathsf{out}} = \sum_{j=1}^N a_{ij}, \quad i \in V$$

Laplacian algorithm: a solution by R. Olfati-Saber and R. Murray 2003, 2004

$$\dot{x}^i=-c^i,\quad x^i,\,c^i\in\mathbb{R}$$
 $c^i=\sum_{j=1}^N a_{ij}(x^i-x^j),\quad x^i(0)=u^i$

- Unbounded c^i
- Weight-balanced
- Strongly connected

•
$$x^i o rac{1}{N} \sum_{j=1}^N x^j(0) = rac{1}{N} \sum_{j=1}^N u^j$$
 as $t o \infty$

• Exponential convergence with rate $\hat{\lambda}_2 = \min\{\lambda(\frac{1}{2}(L+L^{\top})) > 0\}$

$$\left|x^{i}(t) - \frac{1}{N}\sum_{j=1}^{N}u^{j}\right| \leqslant \left|x(t) - \frac{1}{N}\sum_{j=1}^{N}u^{j}\mathbf{1}_{N}\right| \leqslant \left|x(0) - \frac{1}{N}\sum_{j=1}^{N}u^{j}\mathbf{1}_{N}\right| \mathrm{e}^{-\lambda_{2}t}, \quad t \ge 0$$

Laplacian algorithm: a solution by R. Olfati-Saber and R. Murray 2003, 2004

$$\begin{cases} \dot{x} = -Lx, \quad x^i(0) = u^i \\ x = (x^1, \cdots, x^N) \end{cases}$$

- Unbounded c^i
- Weight-balanced
- Strongly connected

•
$$x^i \to \frac{1}{N} \sum_{j=1}^N x^j(0) = \frac{1}{N} \sum_{j=1}^N u^j$$
 as $t \to \infty$

• Exponential convergence with rate $\hat{\lambda}_2 = \min\{\lambda(\frac{1}{2}(L+L^{\top})) > 0\}$

$$\left|x^{i}(t) - \frac{1}{N}\sum_{j=1}^{N}u^{j}\right| \leqslant \left|\mathbf{x}(t) - \frac{1}{N}\sum_{j=1}^{N}u^{j}\mathbf{1}_{N}\right| \leqslant \left|\mathbf{x}(0) - \frac{1}{N}\sum_{j=1}^{N}u^{j}\mathbf{1}_{N}\right| \mathrm{e}^{-\hat{\lambda}_{2}t}, \quad t \ge 0$$

Laplacian algorithm: a solution by R. Olfati-Saber and R. Murray 2003, 2004

$$\begin{cases} \dot{x} = -Lx, \quad x^i(0) = u^i \\ x = (x^1, \cdots, x^N) \end{cases}$$

- Unbounded c^i
- Weight-balanced
- Strongly connected

•
$$x^i \to \frac{1}{N} \sum_{j=1}^N x^j(0) = \frac{1}{N} \sum_{j=1}^N u^j$$
 as $t \to \infty$

• Exponential convergence with rate $\hat{\lambda}_2 = \min\{\lambda(\frac{1}{2}(L+L^{\top})) > 0\}$

$$\left|x^{i}(t) - \frac{1}{N}\sum_{j=1}^{N}u^{j}\right| \leqslant \left|\mathbf{x}(t) - \frac{1}{N}\sum_{j=1}^{N}u^{j}\mathbf{1}_{N}\right| \leqslant \left|\mathbf{x}(0) - \frac{1}{N}\sum_{j=1}^{N}u^{j}\mathbf{1}_{N}\right| \mathbf{e}^{-\hat{\lambda}_{2}t}, \quad t \ge 0$$

Laplacian static average consensus: example

Response of Laplacian algorithm for two different graph topologies

Think about physical processes

- Accommodate agents with limited control authority
- Consistent transient across all communication topologies
- Control over time of arrival

Every agent controls its own convergence rate

Think about physical processes

- Accommodate agents with limited control authority
- Consistent transient across all communication topologies
- Control over time of arrival

Every agent controls its own convergence rate

Problem Definition

$$\dot{x}^i = -c^i$$
, x^i , $c^i \in \mathbb{R}$

- x^i : Agreement state - c^i : Driving command Design $c^i = f(i, \text{neighbors})$ s.t.

$$x^i
ightarrow rac{1}{N} \sum_{j=1}^N u^j, \ \ t
ightarrow \infty$$
 with rate $eta^i,$ i.e.

$$\mathbf{x}^{i}(t) - \frac{1}{N} \sum_{j=1}^{N} u^{j} \Big| \leqslant \kappa \Big| \mathbf{x}^{i}(0) - \frac{1}{N} \sum_{j=1}^{N} u^{j} \Big| \mathbf{e}^{-\beta^{i}t} \Big|$$

Design methodology

• Simplest dynamics: $x^i \to \frac{1}{N} \sum_{j=1}^{N} u^j$ with rate β^i

$$\dot{x}^i = -\beta^i (x^i - \frac{1}{N} \sum_{j=1}^N u^j)$$

• Requirement: fast dynamics to generate $\frac{1}{N} \sum_{j=1}^{N} u^{j}$ in a distributed manner!

- Two-time scales:
 - Fast dynamics: $\dot{z} = -Lz$, $z^i(0) = u^i$: $z^i \to \frac{1}{N} \sum_{j=1}^N u^j$
 - Slow dynamics: $\dot{x}^i = -\beta^i (x^i \frac{1}{N} \sum_{j=1}^N u^j)$

Design methodology

• Simplest dynamics: $x^i \to \frac{1}{N} \sum_{j=1}^{N} u^j$ with rate β^i

$$\dot{x}^i = -\beta^i (x^i - \frac{1}{N} \sum_{j=1}^N u^j)$$

- Requirement: fast dynamics to generate $\frac{1}{N} \sum_{j=1}^{N} u^{j}$ in a distributed manner!
- Two-time scales:
 - Fast dynamics: $\dot{z} = -Lz$, $z^i(0) = u^i$: $z^i \rightarrow \frac{1}{N} \sum_{i=1}^N u^i$
 - Slow dynamics: $\dot{x}^i = -\beta^i (x^i \frac{1}{N} \sum_{j=1}^N u^j)$

Design methodology

• Simplest dynamics: $x^i \to \frac{1}{N} \sum_{j=1}^{N} u^j$ with rate β^i

$$\dot{x}^i = -\beta^i (x^i - \frac{1}{N} \sum_{j=1}^N u^j)$$

• Requirement: fast dynamics to generate $\frac{1}{N} \sum_{j=1}^{N} u^{j}$ in a distributed manner!

- Two-time scales:
 - Fast dynamics: $\dot{z} = -Lz$, $z^i(0) = u^i$: $z^i \to \frac{1}{N} \sum_{j=1}^N u^j$
 - Slow dynamics: $\dot{x}^i = -\beta^i (x^i \frac{1}{N} \sum_{j=1}^N u^j)$

Proposed solution

$$\begin{cases} \varepsilon \, \dot{z}^i = \sum_{j=1}^N a_{ij}(z^i - z^j), \quad z^i(0) = u^i, \\ \dot{x}^i = -\beta^i(x^i - z^i), \quad x^i(0) \in \mathbb{R}, \end{cases} \qquad i \in \{1, \dots, N\}$$

Lemma

For strongly connected and weight-balanced digraphs, $\forall \varepsilon, \beta^i > 0$,

$$x^i(t) o rac{1}{N} \sum_{j=1}^N u^j, \ \textit{as} \ t o \infty, \quad i \in \{1, \dots, N\},$$

exponentially fast, with a rate $\min\{\beta^i, \epsilon^{-1}\hat{\lambda}_2\}$.

Sketch of the proof:

$$\dot{z} = -\epsilon^{-1}Lz, \ z^i(0) = u^i \in \mathbb{R},$$

 $\dot{x}^i = -\beta^i(x^i - z^i), \ x^i(0) \in \mathbb{R}.$

• Laplacian algorithm :

$$\left|z^{i}(t)-\frac{1}{N}\sum_{j=1}^{N}u^{j}\right| \leqslant \left|z(0)-(\frac{1}{N}\sum_{j=1}^{N}u^{j})\mathbf{1}_{N}\right| \mathbf{e}^{-\epsilon^{-1}\hat{\lambda}_{2}t}, \quad t \ge 0$$

• Solution of the agreement dynamics:

$$x^{i}(t) = x^{i}(0)e^{-\beta^{i}t} + \beta^{i}\int_{0}^{t}e^{-\beta^{i}(t-\tau)}z^{i}(\tau)d\tau$$

• For $\beta^{i} = \epsilon^{-1} \hat{\lambda}_{2}$: $|x^{i}(t) - \frac{1}{N} \sum_{j=1}^{N} u^{j}| \leq |x^{i}(0) - \frac{1}{N} \sum_{j=1}^{N} u^{j}| e^{-\beta^{i}t} + t \beta^{i} \kappa_{z} e^{-\beta^{i}t};$ • For $\beta^{i} \neq \epsilon^{-1} \hat{\lambda}_{2}$: $|x^{i}(t) - \frac{1}{N} \sum_{j=1}^{N} u^{j}| \leq \kappa_{z} e^{-\beta^{i}t} + \frac{\beta^{i} \kappa_{z}}{2} (e^{-\epsilon^{-1} \hat{\lambda}_{2}t} - e^{-\beta^{i}t})$

 $\hat{\lambda}_2 = \min\{\lambda(\tfrac{1}{2}(L+L^T)) > 0\}$

Sketch of the proof:

$$\dot{z} = -\epsilon^{-1}Lz, \ z^i(0) = u^i \in \mathbb{R},$$

 $\dot{x}^i = -\beta^i(x^i - z^i), \ x^i(0) \in \mathbb{R}.$

• Laplacian algorithm :

$$\left|z^{i}(t)-\frac{1}{N}\sum_{j=1}^{N}u^{j}\right| \leqslant \left|z(0)-(\frac{1}{N}\sum_{j=1}^{N}u^{j})\mathbf{1}_{N}\right| \mathbf{e}^{-\epsilon^{-1}\hat{\lambda}_{2}t}, \quad t \ge 0$$

• Solution of the agreement dynamics:

$$x^{i}(t) = x^{i}(0)e^{-\beta^{i}t} + \beta^{i}\int_{0}^{t}e^{-\beta^{i}(t-\tau)}z^{i}(\tau)d\tau$$

• For
$$\beta^{i} = \epsilon^{-1} \hat{\lambda}_{2}$$
:

$$|x^{i}(t) - \frac{1}{N} \sum_{j=1}^{N} u^{j}| \leqslant |x^{i}(0) - \frac{1}{N} \sum_{j=1}^{N} u^{j}|e^{-\beta^{i}t} + t \beta^{i} \kappa_{z} e^{-\beta^{i}t};$$
• For $\beta^{i} \neq \epsilon^{-1} \hat{\lambda}_{2}$:

$$|x^{i}(t) - \frac{1}{N} \sum_{j=1}^{N} u^{j}| \leqslant \kappa_{x} e^{-\beta^{i}t} + \frac{\beta^{i} \kappa_{z}}{\beta^{i} - \epsilon^{-1} \hat{\lambda}_{2}} (e^{-\epsilon^{-1} \hat{\lambda}_{2}t} - e^{-\beta^{i}t})$$

 $\hat{\lambda}_2 = \min\{\lambda(\tfrac{1}{2}(L+L^T)) > 0\}$

Sketch of the proof:

$$\dot{z} = -\epsilon^{-1}Lz, \ z^i(0) = u^i \in \mathbb{R},$$

 $\dot{x}^i = -\beta^i(x^i - z^i), \ x^i(0) \in \mathbb{R}.$

• Laplacian algorithm :

$$\left|z^{i}(t)-\frac{1}{N}\sum_{j=1}^{N}u^{j}\right| \leqslant \left|z(0)-(\frac{1}{N}\sum_{j=1}^{N}u^{j})\mathbf{1}_{N}\right| \mathbf{e}^{-\epsilon^{-1}\hat{\lambda}_{2}t}, \quad t \ge 0$$

• Solution of the agreement dynamics:

$$x^{i}(t) = x^{i}(0)e^{-\beta^{i}t} + \beta^{i}\int_{0}^{t}e^{-\beta^{i}(t-\tau)}z^{i}(\tau)d\tau$$

• For
$$\beta^{i} = \epsilon^{-1} \hat{\lambda}_{2}$$
:

$$|x^{i}(t) - \frac{1}{N} \sum_{j=1}^{N} u^{j}| \leqslant |x^{i}(0) - \frac{1}{N} \sum_{j=1}^{N} u^{j}|e^{-\beta^{i}t} + t \beta^{i} \kappa_{z} e^{-\beta^{i}t};$$
• For $\beta^{i} \neq \epsilon^{-1} \hat{\lambda}_{2}$:

$$|x^{i}(t) - \frac{1}{N} \sum_{j=1}^{N} u^{j}| \leqslant \kappa_{x} e^{-\beta^{i}t} + \frac{\beta^{i} \kappa_{z}}{\beta^{i} - \epsilon^{-1} \hat{\lambda}_{2}} (e^{-\epsilon^{-1} \hat{\lambda}_{2}t} - e^{-\beta^{i}t})$$

 $\hat{\lambda}_2 = \min\{\lambda(\tfrac{1}{2}(L+L^T)) > 0\}$

Problem Def.: A static average consensus algorithm with controllable rate of convergence at each agent

$$\dot{x}^i = -c^i, \quad x^i, c^i \in \mathbb{R}$$

- x^i : Agreement state - c^i : Driving command Design $c^i = f(i, \text{neighbors})$ s.t.

$$x^i
ightarrow rac{1}{N} \sum_{j=1}^N u^j, \;\; t
ightarrow \infty$$
 with rate eta^i

solution

$$\begin{cases} \epsilon \, \dot{z}^i = -\sum_{j=1}^N a_{ij}(z^i - z^j), \ z^i(0) = u^i, \\ \dot{z}^i = -\beta^i(x^i - z^i), \ x^i(0) \in \mathbb{R}, \end{cases} \quad i \in \{1, \dots, N\}$$

Rate of convergence of x^i is $\min\{\beta^i, \varepsilon^{-1}\hat{\lambda}_2\}$, then

$$\epsilon \leqslant \frac{\hat{\lambda}_2}{\bar{\beta}}, \quad \bar{\beta} = \max\{\beta^1, \cdots, \beta^N\}$$

$$\hat{\lambda}_2 = \min\{\lambda(\frac{1}{2}(L+L^T)) > 0\}$$

Extension to networks with noisy links, switching networks, time delays

An alternative proof of the convergence of the proposed algorithm:

$$\dot{z} = -\epsilon^{-1}Lz, \quad z^{i}(0) = u^{i} \in \mathbb{R} \qquad \qquad p^{i} = x^{i} - \frac{1}{N} \sum_{j=1}^{N} u^{j} \qquad \qquad \dot{z} = -\epsilon^{-1}Lz$$

$$\dot{x}^{i} = -\beta^{i}(x^{i} - z^{i}), \quad x^{i}(0) \in \mathbb{R} \qquad \qquad q^{i} = z^{i} - \frac{1}{N} \sum_{j=1}^{N} u^{j} \qquad \qquad \dot{p}^{i} = -\beta^{i}(p^{i} - q^{i})$$

• Laplacian algorithm: $z^i \to \frac{1}{N} \sum_{j=1}^{N} u^j$, $(q^i \to 0)$, as $t \to \infty$, $\forall i \in \{1, \dots, N\}$

- $\dot{p}^i = -\beta^i p^i$ is exponentially stable
- $\dot{p}^i = -\beta^i (p^i q^i)$ is a linear system with vanishing input

$$\therefore p^i \to \mathbf{0}, \ (x^i \to \frac{1}{N} \sum_{j=1}^N u^j), \text{ as } t \to \infty, \quad \forall i \in \{1, \dots, N\}$$

Our proposed algorithm inherits any result related to noisy links, switching networks, time delays of the Laplacian algorithm

Extension to networks with noisy links, switching networks, time delays

An alternative proof of the convergence of the proposed algorithm:

$$\dot{z} = -\epsilon^{-1}Lz, \quad z^{i}(0) = u^{i} \in \mathbb{R} \qquad \qquad p^{i} = x^{i} - \frac{1}{N} \sum_{j=1}^{N} u^{j} \qquad \qquad \dot{z} = -\epsilon^{-1}Lz$$

$$\dot{x}^{i} = -\beta^{i}(x^{i} - z^{i}), \quad x^{i}(0) \in \mathbb{R} \qquad \qquad q^{i} = z^{i} - \frac{1}{N} \sum_{j=1}^{N} u^{j} \qquad \qquad \dot{p}^{i} = -\beta^{i}(p^{i} - q^{i})$$

• Laplacian algorithm: $z^i \to \frac{1}{N} \sum_{j=1}^{N} u^j$, $(q^i \to 0)$, as $t \to \infty$, $\forall i \in \{1, \dots, N\}$

• $\dot{p}^i = -\beta^i p^i$ is exponentially stable

• $\dot{p}^i = -\beta^i (p^i - q^i)$ is a linear system with vanishing input

$$\therefore p^i \to \mathbf{0}, \ (x^i \to \frac{1}{N} \sum_{j=1}^N u^j), \text{ as } t \to \infty, \quad \forall i \in \{1, \dots, N\}$$

Our proposed algorithm inherits any result related to noisy links, switching networks, time delays of the Laplacian algorithm

The proposed static average consensus: example

Desired rates and consistent transient are imposed by using $\varepsilon = 0.1!$

First-order Euler discretization with stepsize δ :

$$z^{i}(k+1) = z^{i}(k) - \delta \epsilon^{-1} \sum_{j=1}^{N} a_{ij}(z^{i}(k) - z^{i}(k))$$
$$x^{i}(k+1) = x^{i}(k) - \delta(\beta^{i}(x^{i}(k) - z^{i}(k)))$$

Lemma

• Let G be strongly connected and weight-balanced digraph topology

•
$$x^{i}(0) \in \mathbb{R}$$
 and $z^{i}(0) = u^{i} \in \mathbb{R}, i \in \{1, ..., N\}$

• For a given $\epsilon > 0$ and $\beta^i > 0$, $i \in \{1, ..., N\}$, choose $\delta \in (0, \min\{\epsilon d_{\max}^{out^{-1}}, \overline{\beta}^{-1}\})$, $\overline{\beta} = \max\{\beta^1, \cdots, \beta^N\}$

$$x^{i}(k), z^{i}(k)
ightarrow rac{1}{N} \sum_{j=1}^{N} u^{j}$$
 as $k
ightarrow \infty, \in \{1, \dots, N\}$

$$\mathsf{d}_{\max}^{\mathsf{out}} = \max_{i \in \{1, \dots, N\}} \{\sum_{i=1}^{N} a_{ij}\}$$

$$\dot{x}^i = -c^i, \quad x^i, c^i \in \mathbb{R}$$

- xⁱ: Agreement state - cⁱ: Driving command

Design $c^i = f(i, \text{ neighbors})$ s.t.

• $x^i \rightarrow \frac{1}{N} \sum_{j=1}^{N} u^j$, $t \rightarrow \infty$, with rate β^i

- Agents with limited control authority opt for slower rate
- · Consistent response over different communication topologies
- Control over time of arrival

2)
$$x^i \rightarrow \frac{1}{N} \sum_{j=1}^{N} u^j$$
, $t \rightarrow \infty$, even though $\dot{x}^i = -\operatorname{sat}_{\tilde{c}^i}(c^i)$

Average consensus is achieved despite limited control authority

Think of physical processes: limited driving command

Slow rate helps but it is not enough

Problem Definition

$$\dot{x}^i = -c^i, \quad |\mathbf{c}^i| \leqslant \mathbf{\bar{c}}^i$$

- xⁱ: Agreement state

Design $c^i = f(i, \text{ neighbors})$ s.t.

$$x^i o rac{1}{N} \sum_{j=1}^N u^j, \ t \to \infty$$

$$\begin{cases} \varepsilon \, \dot{z} = -Lz, \quad z^i(0) = u^i, \\ \dot{x}^i = -\operatorname{sat}_{\bar{c}^i}(\beta^i(x^i - z^i)), \quad x^i(0) \in \mathbb{R}, \end{cases} \qquad i\{1, \dots, N\}$$

Lemma

$$\forall \epsilon, \beta^i > 0, x^i(t), z^i(t) \rightarrow \frac{1}{N} \sum_{j=1}^N u^j, as t \rightarrow \infty.$$

1

Sketch of the proof

•
$$p^{i} = \beta(x^{i} - \frac{1}{N}\sum_{j=1}^{N}u^{j}), \quad q^{i} = -\beta^{i}(z^{i} - \frac{1}{N}\sum_{j=1}^{N}u^{j})$$

• $q^i(t)$ is a bounded and $q^i(t) \to 0$ as $t \to \infty$

• $\dot{p}^i = -\beta^i \operatorname{sat}_{c^i}(p^i + q^i)$ is an ISS stable system (Sontag 94), i.e.,

$$p^i o 0 \left(x^i(t) o rac{1}{N} \sum_{j=1}^N u^j
ight)$$
 as $t o \infty$

E. D. Sontag. On the input-to-state stability property. European Journal of Control, 1995.

$$\begin{cases} \epsilon \dot{z} = -Lz, \ z^i(0) = u^i, \\ \dot{x}^i = -\operatorname{sat}_{\bar{c}^i}(\beta^i(x^i - z^i)), \ x^i(0) \in \mathbb{R}, \end{cases} \qquad i\{1, \dots, N\}$$

Lemma

$$\forall \epsilon, \beta^i > 0, x^i(t), z^i(t) \rightarrow \frac{1}{N} \sum_{j=1}^N u^j, as t \rightarrow \infty.$$

Sketch of the proof

•
$$p^i = \beta(x^i - \frac{1}{N}\sum_{j=1}^N u^j), \quad q^i = -\beta^i(z^i - \frac{1}{N}\sum_{j=1}^N u^j)$$

• $q^i(t)$ is a bounded and $q^i(t) \to 0$ as $t \to \infty$

• $\dot{p}^i = -\beta^i \operatorname{sat}_{c^i}(p^i + q^i)$ is an ISS stable system (Sontag 94), i.e.,

$$p^i o 0 \left(x^i(t) o rac{1}{N} \sum_{j=1}^N u^j
ight)$$
 as $t o \infty$

E. D. Sontag. On the input-to-state stability property. European Journal of Control, 1995.

$$\begin{cases} \epsilon \dot{z} = -Lz, \ z^i(0) = u^i, \\ \dot{x}^i = -\operatorname{sat}_{\bar{c}^i}(\beta^i(x^i - z^i)), \ x^i(0) \in \mathbb{R}, \end{cases} \qquad i\{1, \dots, N\}$$

Lemma

$$\forall \epsilon, \beta^i > 0, x^i(t), z^i(t) \rightarrow \frac{1}{N} \sum_{j=1}^N u^j, as t \rightarrow \infty.$$

Sketch of the proof

•
$$p^{i} = \beta(x^{i} - \frac{1}{N}\sum_{j=1}^{N}u^{j}), \quad q^{i} = -\beta^{i}(z^{i} - \frac{1}{N}\sum_{j=1}^{N}u^{j})$$

•
$$q^i(t)$$
 is a bounded and $q^i(t) \to 0$ as $t \to \infty$

• $\dot{p}^i = -\beta^i \operatorname{sat}_{\vec{c}^i}(p^i + q^i)$ is an ISS stable system (Sontag 94), i.e.,

$$p^i o 0 \left(x^i(t) o rac{1}{N} \sum_{j=1}^N u^j
ight) \ \ \text{as} \ t o \infty$$

E. D. Sontag. On the input-to-state stability property. European Journal of Control, 1995.

The proposed static average consensus is robust to saturation: example

Driving command is bounded

$$\dot{x}^i = -\operatorname{sat}_{\overline{c}^i}(c^i)$$

Laplacian consensus

$$c^{i} = \sum_{i=1}^{N} a_{ij}(x^{i} - x^{j})$$
$$x^{i}(0) = u^{i},$$

• The proposed consensus

$$\begin{cases} \dot{z}^{i} = -\sum_{i=1}^{N} a_{ij}(x^{i} - x^{j}), \ z^{i}(0) = u^{i}, \\ c^{i} = x^{i} - z^{i}, \ x^{i}(0) \in \mathbb{R}, \end{cases}$$

Summary

- We presented a distributed static average consensus algorithm which allows each agent to choose its own rate of convergence
- Our algorithm can be used to schedule the time of arrival of the agents to the agreement value
- Using our algorithm one can impose a consistent transient response over different communication topologies
- Our algorithm has intrinsic robustness against bounded driving commands
- Our algorithm is suitable for networked systems of physical processes where limited control authority exists most of the time

Future work

- Stepsize characterization for discrete-time implementation when driving command is bounded
- Extension of the results to dynamic signals.

Summary

- We presented a distributed static average consensus algorithm which allows each agent to choose its own rate of convergence
- Our algorithm can be used to schedule the time of arrival of the agents to the agreement value
- Using our algorithm one can impose a consistent transient response over different communication topologies
- Our algorithm has intrinsic robustness against bounded driving commands
- Our algorithm is suitable for networked systems of physical processes where limited control authority exists most of the time

Future work

- Stepsize characterization for discrete-time implementation when driving command is bounded
- Extension of the results to dynamic signals. tintoretto.ucsd.edu/solmaz