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Modified Anti-windup Compensators for

Stable Plants

Solmaz Sajjadi-Kia and Faryar Jabbari

Abstract

We investigate the effects of deferring the activation of anti-windup by allowing actuators to remain

in the saturated regime longer, without any assistance. The basic idea is to apply anti-windup when

the performance of the saturated system faces substantial degradation. For this, we present a modified

anti-windup scheme along with the appropriate LMIs to obtain the gains. For two examples, we show

that the modified anti-windup scheme renders better performance than the immediate application of

anti-windup.

Index Terms

Input saturation, anti-windup synthesis, finite L2 gain.

I. INTRODUCTION

Designing high performance feedback controllers for linear systems with bounded actuators

has been one of the major problems in control for decades, for which ad-hoc but intuitive

techniques had been used. However, over the last decade several groups have obtained rigorous

stability and performance results for linear systems with input saturation. One common method

to deal with input saturation is the so-called Anti-Windup (AW) compensation method (e.g., [1]-

[5]). Typically, AW is a two-step procedure, in which the original linear controller is designed

without considering the input saturation. Since this controller is likely to saturate, the system is
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augmented with an AW protection loop to handle saturation. In this paper, we provide a modified

form of the traditional AW for application to linear systems subject to saturation.

In recent years, the structure shown in Fig. 1, where sat(·) represents the standard decentralized

saturation nonlinearity, has been adapted for many AW augmentation schemes. Traditionally,

properties of AW schemes, such as stability guarantees and graceful degradation of performance

of systems were addressed through extensive simulations. More recently, by relying on numerical

solvers for Linear Matrix Inequalities (LMIs), stability and performance guarantees have been

developed for cases where the augmentation considered is static or dynamic with an order

matching that of the plant (e.g., [2], [3], respectively).

In this paper, we consider the static AW augmentation synthesis problem. For this, we use

an approach based on the Small Gain Theorem (SGT). The results lead to a variation of the

LMIs typically used for AW synthesis (e.g., those in [2] and [3]), though the two approaches are

closely related (e.g. see Lemma 3.5.6 in [6]). The main contribution of this paper, developed in

Section III, is investigating the effect of postponing the activation of AW. The rationale behind

this intentional delay is a tradeoff between the two possible modes of operation. In one, AW is

active as soon as saturation is encountered, resulting in a stable but typically low performance

controller. On the other hand, if the actuator command is slightly or moderately above saturation,

the nominal controller acts as a high performance controller subjected to a modest amount of

parameter uncertainty at the input. The basic idea is not to apply AW action as soon as saturation

is encountered, but instead allow saturated actuators act unassisted up to a point, to be made

precise below. This is based on the assumption that the nominal controller possesses a reasonable

amount of performance robustness. This idea is somewhat related to the over-saturation (e.g., [7])

or high-gain (e.g., [8], [9]) approaches that have been used in the direct and explicit approach

to saturation though, unlike these references, the controller used in the small signal regime here

is the high performance nominal one which is augmented in a manner very similar to AW

schemes. The results are studied through two examples. The preliminary results of this paper

were presented in [10]. Here a complete version with detailed description for the multi-input

systems has been provided, along with a new example. Notations are quite standard, though to

avoid confusion certain concepts and notations are defined or discussed, as the need arises. To

reduce clutter, off-diagonal entries in symmetric matrices are replaced with ‘?’.
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Fig. 1. Standard anti-windup augmentation scheme

II. STATIC ANTI-WINDUP SYNTHESIS

A. Problem Definition

Consider a system with a nominal controller designed to fulfill a specific task, such as tracking

or disturbance regulation for which, due to possible saturation, an AW block is needed. Consider

Fig. 1, in which

Σp ∼


ẋp = Apxp +B1w +B2û

y = C2xp +D21w +D22û

z = C1xp +D11w +D12û

(1)

is the the plant dynamics with xp ∈ Rn the plant state, û ∈ Rnu the control input, w ∈ Rnw

the exogenous input, y ∈ Rny the measurement output, and z ∈ Rnz the controlled output. The

plant with û ≡ 0 is the open-loop plant. The controller is described as

Σ̂c ∼

 ẋc = Acxc +Bcyy +Bcww + η1

u = Ccxc +Dcyy +Dcww + η2
(2)

where xc ∈ Rnc and u ∈ Rnu are the controller state and output vectors, respectively, while

η1 and η2 are inputs due to the AW. When η1 = 0 and η2 = 0, then Σ̂c becomes Σc, the

nominal controller. The saturation is assumed decentralized with the limit ulim for each ui

(i = 1, 2, ..., nu):

ûi = sat(ui) = sgn(ui)min{|ui|, ulim}

The purpose of the AW block in Fig. 1 is to introduce correction terms in the controller

to counteract adverse effects of saturation. Ideally, these correction terms should not affect the

control loop as long as actuators do not saturate. A common choice for AW block is static
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Fig. 2. Standard interconnection for closed-loop system

constant gains (see [2]) where, for q = u− û, the AW block in Fig. 1 is of the structure

η =

 η1

η2

 = −Λq = −

 Λ1

Λ2

 q. (3)

B. LMI-Based Anti-windup Synthesis

Often, saturation function (or deadzone function) is treated as a sector nonlinearity and the

problem is cast in the general framework of absolute stability. Then, tools such as the Circle cri-

terion, mostly with LMI characterization developed with quadratic Lyapunove/storage functions,

are used to design stabilizing AW gains (see [2] and [3] for two well-known representatives).

Here, we use the scaled Small Gain Theorem (SGT) approach which results in a variation of

the the LMIs obtained in [2] and [3]. Originally, use of SGT was motivated by the potential for

incorporating a measure of scheduling in the basic AW scheme. For the purposes of this paper

however, either approach would have sufficed and provided essentially the same results. In all

of these methods including this work, since we ensure stability for any possible saturation level,

we are restricting ourselves to open-loop stable plants Σp.

By selecting x = [xTp xTc ]T , and considering w and q = u− û as input, we can represent the

closed-loop system (1), (2), and (3) in the LFT format shown in Fig. 2(a) where ∆ is a diagonal

matrix with each entry 1(·)− sat(·). To reduce conservatism, we introduce the diagonal nu×nu
scaling matrix W > 0, as shown in Fig. 2(b), where W (technically M = W−2) becomes a

search variable. Then,

Σ̃ ∼


ẋ = Ax+Bww + (Bq −BηΛ)W−1q̃

z = Czx+Dzww + (Dzq −DzηΛ)W−1q̃

ũ = WCux+WDuww +W (Duq −DuηΛ)W−1q̃

(4)
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where A, Bη, etc. are determined by the matrices in (1) and (2). For decentralized saturation, ∆ is

a diagonal dead-zone matrix, thus ‖∆‖2 ≤ 1. This, and diagonal W > 0, imply ‖W∆W−1‖2 ≤ 1.

Therefore, to have the feedback system in Fig. 2(c) stable, the SGT condition becomes:

‖Σ̃ũq̃‖2,i < 1. (5)

To establish a performance bound, typically L2 gain from w to z is considered. Following the

standard approach, by relying on the quadratic Lyapunov function V = xTQ−1x with Q > 0,

the L2 gain from w to z, γ, can be obtained using the standard inequality

d

dt
(xTQ−1x) + γ−1zT z − γwTw < 0. (6)

Since ‖W∆W−1‖2 ≤ 1, we have q̃T q̃ − ũT ũ ≤ 0. Then, invoking the S-procedure for some

τ > 0,
d

dt
(xTQ−1x) + γ−1zT z − γwTw − τ(q̃T q̃ − ũT ũ) < 0 (7)

is the sufficient condition for inequality (6). Expanding this inequality and preforming proper

congruent transformations, inequality (7) can be written in the LMI form of the theorem below

with M = 1
τ
W−2 and X = ΛM .

Theorem 1 (Synthesis and performance). The closed loop system in Fig. 2 is stable and the L2

gain from w to z is less than γ, if there exist diagonal matrix M > 0, symmetric matrix Q > 0,

and matrix X satisfying

AQ + QAT ? ? ? ?

MBT
q −XTBT

η −M ? ? ?

CuQ DuqM−DuηX −M ? ?

BT
w 0 DT

uw −γI ?

CzQ DzqM−DzηX 0 Dzw −γI


< 0. (8)

If the LMI is feasible, then the AW gain can be obtained from Λ = XM−1.

Note that the block (1:3,1:3) is the sufficient LMI condition for (5), thus stability is ensured.

The well-posedness of the closed-loop system under the AW augmentation is guaranteed by the

block (2:3,2:3) (see the Appendix for details.)
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Fig. 3. Plant output and input plots: unconstrained ideal system (dashed), saturated nominal closed-loop with no AW (dashed-

dotted), saturated closed-loop with AW (dotted).

C. Motivating Numerical Example

Consider the following system taken from [4] with input bound ulim = 1,

 Ap B2 B1

C2 D22 D21

 =


−10.6 −6.09 −0.9 1 0

1 0 0 0 0

0 1 0 0 0

−1 −11 −30 0 0


 Ac Bcy Bcr

Cc Dcy Dcr

 =


−80 0 1 −1

1 0 0 0

20.25 1600 80 −80


with z = y− r, where r is the reference signal. The nominal closed loop γ is 1. Using Theorem

1, the AW gain is Λ = [−0.1968 0.0025 − 0.9860]T , with a performance level of γ = 85.78,

very close to the result obtained in [4] for the static AW, which was γ = 86.07. The slight

difference probably is the result of different options used in the LMI solver. Figure 3 shows the

response with and without the AW augmentation for the the reference signal used in [4]. The

response is essentially the same as the one obtained in [4]. Here, by ‘Constrained Nominal’, we

mean the system with bounded actuator(s), under nominal controller but without the AW.
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III. A MODIFIED ANTI-WINDUP SCHEME

Figure 3 suggests that for this example, constrained nominal closed-loop system (dash-dotted)

shows better tracking behavior than the system with AW (solid), especially the first 10 seconds.

A possible explanation might be the tradeoff between the two possible modes of operation

mentioned before: in one, AW is active as soon as saturation is encountered, resulting in a safe

(i.e., stable) but a low performance controller, in the sense that typically the only performance

guarantees are no better than the open-loop. Recall that the nominal γ was 1, while γ of the

AW was 85.78. On the other hand, if the actuator command is only moderately above saturation,

the nominal controller acts as a high performance controller subjected to a modest amount of

parameter uncertainty at the input, or ‘matched’ uncertainty, which is a mild form of uncertainty.

Based on this observation, the main idea here is to postpone the activation of AW to a

point where system really needs AW protection. To investigate further, we first consider the

performance of the constrained system without AW as a function of the maximum value of the

command sent to the saturation box. For notational simplicity, we first discuss the single input

case. The generalization to multi-input systems will be discussed later.

A. Single-input Plants

The nonlinear saturation element with input u(t), output û(t), and saturation bound ulim can

be replaced by the time varying gain G(t):

û(t) = G(t)u(t), G(t) =

 1 |u(t)| ≤ ulim

sgn(u(t))ulim
u(t)

|u(t)| > ulim
. (9)

The idea of modeling saturation with a time varying gain has been exploited before (e.g., see

[9],[11], and [12].) When the actuator is not saturated, G = 1. If |u(t)| can be bounded with
1
g
ulim, for 0 ≤ g < 1, then the minimum value retained by G(t) is g, i.e., G(t) ∈ [ g , 1].

For the rest of this paper, we assume D22 = 0. Then, considering (9), the nominal constrained

closed-loop system (equations (1),(2)) with x = [xTp xTc ]T can be written as ẋ = Acl(G(t))x+Bcl(G(t))w

z = Ccl(G(t))x+Dcl(G(t))w
(10)
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Fig. 4. Performance (i.e., L2 gain) of the saturated system for different level of saturation, i.e, different values of g in

G(t) ∈ [ g , 1].

with  Acl(G(t))

Ccl(G(t))

 =


Ap +B2G(t)DcyC2 B2G(t)Cc

BcyC2 Ac

C1 +D12G(t)DcyC2 D12G(t)Cc


 Bcl(G(t))

Dcl(G(t))

 =


B1 +B2G(t)DcyD21 +B2G(t)Dcw

Bcw +BcyD21

D11 +D12G(t)DcyD21 +D12G(t)Dcw

 .
The matrices above represent an LPV system with variable G(t) ∈ [ g , 1] (0 ≤ g). Note that,

G(t) is actually G(u(t)) and, since u(t) is dependent on states, the system has a quasi-LPV form.

Here, we use g as a measure of the level of saturation. To study the performance of the saturated

nominal closed-loop system for different levels of saturation, we assume that |u(t)| ≤ 1
g
ulim for

all t. Then, an estimate for the L2 gain of this closed-loop can be obtained from minimizing γg

subject to Q > 0 and
QAcl(ḡ)T + Acl(ḡ)Q ? ?

Bcl(ḡ)T −γgI ?

Ccl(ḡ)Q Dcl(ḡ) −γgI

 < 0 for ḡ = {g , 1} (11)

where matrix Acl(ḡ), etc mean value of Acl(G(t)) evaluated at G(t) = ḡ.

Figure 4 shows the result of analysis for the example of Section II-C. In this figure, each

point (g, γ) on the curve represents the performance of the system for G(t) ∈ [ g , 1], i.e. if
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Fig. 5. New modified anti-windup scheme. Note that ud ∈ [−ulim
gd

, ulim
gd

] and û ∈ [−ulim, ulim]

the actuator is guaranteed to receive – somehow – control command with peak value of 1
g
ulim

or less. Figure 4 suggests that such a constrained nominal closed-loop system has adequate

performance up to about g = 0.2, or equivalently |u(t)| ≤ 1
0.2

1 = 5 (i.e., G(t) ∈ [0.2 , 1]),

without any assistance from any external compensator. Of course, in general and without further

modification, we cannot know or limit the peak value of the command to the actuator.

Motivated by this, we propose the scheme shown in Fig. 5 for the deferral of AW activation. In

this new scheme, we add an artificial saturation element with saturation bounds ± 1
gd
ulim, where gd

is the design variable, specified by designer, thus ud(t) = sgn(u(t)) min{(|u(t)|, 1
gd
ulim}. Then,

we use q(t) = u(t)−ud(t), the difference between the input and output of the artificial saturation

(implemented easily via software), as the input signal to the static AW block. This lets the

saturated system stay unassisted up to the point gd, i.e., AW activates only when |u(t)| > 1
gd
ulim.

One can obtain the design point, gd, by trial and error, focused around the ‘bend’ in the γg vs.

g plots similar to the one in Fig. 4. Note that gd depends on how much input uncertainty the

nominal closed-loop can tolerate. A desirable nominal controller can be expected to have a

reasonable amount of performance robustness, particularly to matched uncertainty in the B2

matrix, allowing a relatively small gd.

In Fig. 5, since the input to the actuator satisfies |ud(t)| ≤ 1
gd
ulim, we have û(t) = G(t)ud(t)

where G(t) ∈ [gd, 1], and if |ud(t)| > 1
gd
ulim, then G(t) = gd. Thus, instead of (1)-(3), we have

ẋp = Apxp +B1d+B2G(t)ud

y = C2xp +D21w

z = C1xp +D11w +D12G(t)ud ẋc = Acxx +Bcyy +Bcww − [I 0]Λq

u = Ccxc +Dcyy +Dcww − [0 I]Λq
.
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The structure remains the same as the original problem except that now the control input

matrices, B2 and D12, are effectively B2G(t) and D12G(t) . We use a diagonal W > 0 for

scaling as before, i.e., we have ũ = Wu and q̃ = Wq. Then, we can depict Fig. 5 in the similar

LFT format of Fig. 2. The only difference is that now the system matrices of Σ and Σ̃ have

G(t) which appears linearly; thus, we only need to set D22 = 0, and replace B2 and D12 with

B2G(t) and D12G(t), respectively, as in

A(G(t)) =

 Ap +B2G(t)DcyC2 B2G(t)Cc

BcyC2 Ac

 . (12)

Since the saturation level does not enter the design inequalities that were in Theorem 1, one

can follow the steps used in Theorem 1 by using the same V = xTQ−1x and the L2 inequality in

(6)-(7), except for a plant that has a parameter varying B2 and D12. Due to linearity, this leads to

two matrix inequalities of the form in (8), one for each extreme value of G(t): 1 or gd. However,

the interaction between the two saturation elements can be used to reduce the dimension of one

of the inequalities: Consider the modified AW scheme in Fig. 5. For the Lyapunov function

V = xTQ−1x, (6) ensures that the L2 gain of the closed-loop system under the modified AW is

less than γ. Depending on the condition of the artificial saturation element, the system is under

one of the following two operating modes:

• When |u(t)| ≤ 1
gd
ulim, i.e., the artificial saturation element is not saturated; we have q = 0

(q̃(t) = 0). Therefore, inequality (6), applied for this case, can be written in the LMI form
A(G(t))Q + QA(G(t))T ? ?

Bw(G(t))T −γI

Cz(G(t))TQ Dzw(G(t)) −γI

 < 0 (13)

where variable G(t) ∈ [gd, 1]. It is sufficient to check this inequity for G = gd and G = 1.

• When |u(t)| > 1
gd
ulim, we have |ud(t)| = 1

gd
ulim. As a result q(t) 6= 0 (q̃(t) 6= 0), but

û(t) = gdud(t), i.e., G(t) is now a constant gain. Following the steps used to get (8), we get the

LMI (15) in the theorem below.

Thus at any given time, depending on the operating condition of the artificial saturation

element, either (14) or (15) below ensures (6) holds for the modified AW scheme, which

establishes stability and L2 gain.
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Theorem 2 (Single input). The closed loop system in Fig. 5 is stable and the L2 gain from w to

z is less than γ, if there exist a scalar M > 0, symmetric matrix Q > 0, and matrix X satisfying
A(ḡ)Q + QA(ḡ)T ? ?

Bw(ḡ)T −γI ?

Cz(ḡ)Q Dzw(ḡ) −γI

 < 0 for ḡ = 1 (14)



Ω1×1(gd) ? ? ? ?

Bw(gd)
T −γI ? ? ?

Cz(gd)Q Dzw(gd) −γI ? ?

Ω4×1(gd) 0 Ω4×3(gd) −M ?

CuQ Duw 0 Ω5×4(gd) −M


< 0 (15)

with 
Ω1×1(gd) = A(gd)Q + QA(gd)

T

Ω4×1(gd) = MBq(gd)
T −XTBη(gd)

T

Ω4×3(gd) = MDzq(gd)
T −XTDzη(gd)

T

Ω5×4(gd) = DuqM−DuηX

where A(gd), etc mean value of A(G(t)) in (12) evaluated at G(t) = gd. If this problem is

feasible, then the AW gain, Λ, can be obtained from Λ = XM−1.

LMI (14) holding for both ḡ = 1 and ḡ = gd is a sufficient condition for LMI (13). However,

note that the block (1:3,1:3) of LMI (15) is the repetition of LMI (14) for ḡ = gd. Therefore, we

do not need LMI (14) for ḡ = gd. Also, (15) is exactly the same as (8) except some rows/colums

are reordered (to see the connection to (14) more clearly). One could have used two inequalities

of the form in (8), one evaluated at ḡ = 1 and one at ḡ = gd. The form above reduces size of

one of the inequalities (as in (14)). While this might be of marginal benefit in a single input

case, the benefits grow for the multi-input case, which are discussed next.

B. Multi-input Plants

In case of multiple actuators, we use the same modified scheme of Fig. (5) with the same

approach as in the single actuator case to model the system under the modified AW. The only
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difference is that now the variable G(t), equivalent gain for actuators saturation box, is a nu×nu
diagonal matrix with each entry similar to (11), i.e.,

G(t) = diagonal{Gi(t)} with Gi(t) ∈ [gdi , 1]

where 0 ≤ gdi < 1, i = 1, 2, ..., nu, is the design point chosen for the ith actuator. Given

linearity, any G(t) can be represented as a linear combination of extreme values, evaluated at

the corners of the parameter hypercube. So, G(t) =
∑2nu

k=1 αk(t)G
k

(
∑2nu

k=1 αk(t) = 1), where

∀ i = 1, 2, · · · , nu

G
k ∈ G, k = 1, 2, · · · , 2nu , G = {G(t) : Gi(t) = gdi or 1} (16)

Then, the sufficient condition to establish stability and an estimate for the L2 gain of the closed-

loop system is simply checking the analog of the the inequality (8) at the vertices obtained from

G(t) (i.e., G
k
, k = 1, 2, · · · , 2nu).

Theorem 3 (Multi-input). The closed loop system in Fig. 5 is stable and the L2 gain from w

to z is less than γ, if there exist an nu × nu diagonal matrix M > 0, symmetric matrix Q > 0,

and matrix X satisfying

Φk < 0 for k = 1, 2, ..., 2nu (17)

where Φk = 

Φ1×1(k) ? ? ? ?

Bw(G
k
)T −γI ? ? ?

Cz(G
k
)Q Dzw(G

k
) −γI ? ?

Φ4×1(k) 0 Φ4×3(k) −M ?

CuQ Duw 0 DuqM−DuηX −M


(18)

Φ1×1(k) = A(G
k
)Q+QA(G

k
)T , Φ4×1(k) = MBq(G

k
)T−XTBη(G

k
)T , Φ4×3(k) = MDzq(G

k
)T−

XTDzη(G
k
)T , and G

k
is defined in (16). If this set is feasible, then the modified AW gain, Λ,

can be obtained from Λ = XM−1.

While in a typical uncertain (or LPV) problem satisfaction at the corners of the parameter

hypercube is necessary, similar to the development of Section (III-A), the structure of Fig. 5 can

be used to reduce the size of some of the matrix inequalities in Theorem 3.
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For this, one can methodically apply (6) for the 2nu possible operating conditions in which a

subset of artificial actuators are saturated, starting with all saturated, then any one unsaturated,

then any combination of two unsaturated, etc. For a given operating condition, if any of the

artificial saturation elements, say ith one, is saturated, we have Gi(t) = gdi , and when it is not

saturated we have qi(t) = 0 and Gi(t) ∈ [1 , gdi ]. In the first case (all saturated), we get an

LMI similar to (18) with Gi(t) = gdi ∀i. In the operating conditions where one is unsaturated,

similar to Section III-A (LMI (13)), the AW gains for the unsaturated actuator do not enter

the resulting LMI, leading to a smaller LMI (fewer rows/columns). However, in the unsaturated

channel Gi(t) ∈ [1 , gdi ], resulting in an LMI with time varying element (similar to (13)) for

each any-one-unsaturated case. A sufficient condition for every LMI is to evaluate it at Gi(t)’s

corners: 1 and gdi . However, the LMI corresponding to gdi corner is a sub-block of the LMI of the

operating condition in which that actuator is saturated (in this case, the LMI with Gi(t) = gdi ∀i,

seen in the very first case), and thus is automatically satisfied. Hence, we only keep the LMI

corresponding to the corner Gi(t) = 1 ∀i. This procedure is repeated for the rest of the operating

conditions. In each operating condition, we get only one new LMI in which the entries of G
k

corresponding to unsaturated actuators are 1 and the rows/columns of the AW gains of those

actuators are eliminated for that LMI. The resulting reduced dimension LMIs are summarized

in Theorem 4 below. First, we need to introduce matrices T k: For each diagonal G
k
, we define

a T k as the nu × nu identity matrix in which, for i = 1, 2, · · · , nu the ith row is removed if

G
k

i = 1.

Theorem 4 (Multi-input, reduced size). The closed loop system in Fig. 5 is stable and the L2

gain from w to z is less than γ, if there exist an nu × nu diagonal matrix M > 0, symmetric

matrix Q > 0, and matrix X satisfying

Ψk < 0 for k = 1, 2, ..., 2nu (19)

where Ψk = 

Ψ1×1(k) ? ? ? ?

Bw(G
k
)T −γI ? ? ?

Cz(G
k
)Q Dzw(G

k
) −γI ? ?

Ψ4×1(k) 0 Ψ4×3(k) −T kMT kT ?

T kCuQ T kDuw 0 Ψ5×4(k) −T kMT kT


(20)
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Fig. 6. Plant output and input for the example of Section II-C: Unconstrained ideal response (dashed), immediate activation

of AW (dotted) and modified AW (solid). (a), (b) the same reference signal of Section II-C (peak value 1.5) (c), (d) smaller

reference signal (peak value 0.15).

Ψ1×1(k) = A(G
k
)Q + QA(G

k
)T , Ψ4×1(k) = T k(MBq(G

k
)T − XTBη(G

k
)T ), Ψ4×3(k) =

T k(MDzq(G
k
)T −XTDzη(G

k
)T ), Ψ5×4(k) = T k(DuqM−DuηX)T kT and G

k
defined in (16).

If this set is feasible, then the modified AW gain, Λ, can be obtained from Λ = XM−1.

C. Numerical Examples

Continuing with the example of Section II-C: Using Theorem 2 with design point gd = 0.17,

Λ = [−0.003 0 − 1]T is obtained for the modified AW. This compensator has γ = 87.50.

With gd = 1, i.e, immediate activation of AW, we had γ = 85.78. The overall γ for the modified

scheme is slightly higher than that of the traditional one, as expected (due to uncertainty in control

input matrix). As Fig. 6 suggests, however, we get better results with the modified scheme (solid

line), especially when the system is slightly saturated, particulary for smaller reference (Fig.

6.c).

Example 2: Consider the forth order lateral dynamics of F16 aircraft with states [β φ p r]T ,

and control inputs: aileron deflection and rudder deflection, augmented with the actuator dy-

namics for each channel in the form of 20.2
s+20.2

, given in [13] page 577. The following LQG

controller with y = [φ β]T is designed to maintain a desired bank angle φr for the aircraft:
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C(s) = 1
s
P (−K [sI − Ap −B2K − LC2]

−1 L) . The reference [13] studies the response of the

aircraft for given predesigned values of the matrices L and P , and different values of K obtained

using the state weight Q = CT
2 C2 and different values of control input weight R. Here we use

a K obtained from R = diagonal
[

10−11 10−8

]
. The saturation limit of each control surface

is ±15 degree. The controlled output is z = φ − φr. Figure 7 illustrates the bank angle of the

aircraft φ, and the control inputs to the aircraft for a command of φr = 6◦. The control inputs to

the aircraft are both almost zero after t = 0.6 sec, thus, for the clarity of illustration of the early

parts, the time history of the inputs are only shown for t = [0 1]. For the given command, as

the input to the system plots show, in the constrained nominal case, i.e. no AW (dash-dotted),

both actuators are saturated resulting in a big overshoot in the φ response compared to the the

ideal unconstrained closed-loop response (dashed).

Using the traditional AW scheme (procedure of Section II-B), a static AW compensator can

be obtained, which guarantees a L2 gain of γ = 85.9. Next, we use Theorem 4, to design a

modified AW. Using plots similar to Fig. 4, after some trial and error, the following design

point is chosen: gd1 = 0.8, gd2 = 0.25. Using this design point, a modified AW compensator is

designed whose overall L2 gain is γ = 181.37. Figure 7 also shows the response of the system

with the immediate activation of the AW (dotted), and response of system under the modified AW

(solid). The goal of the modified AW is to generate a response closer to the ideal unconstrained

closed-loop system; as Fig 7 shows the system with the modified AW accomplishes this goal.

In the case of multiple actuators interpretation of the results are not as straightforward as the

single actuator case because of the coupling induced by the static AW gains in the controller

channels. For example, here, both actuators are saturated in the constrained nominal case,

however, in both traditional and modified AW cases the first actuator does not saturated; this can

be as a result of the early activation of the AW due to the second actuator’s saturation. Although

γ for the modified AW is higher than the traditional case, as expected, the system has better

response. Closer examination of the output plot shows that the constrained nominal system is

faster than the system with the traditional AW. The deferral of the activation of the AW lets

the system take advantage of the this fast response, and generate a response closer to the ideal

nominal closed-loop.
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Fig. 7. System response (second example), output is in the left and inputs are in the right; unconstrained ideal closed-loop

(dashed), constrained nominal closed-loop (dash-dotted), immediate activation of AW (dotted) and modified AW (solid)

IV. CONCLUSION

We proposed a new modified AW scheme, in which AW is applied when it is necessary and

the performance of the saturated system faces substantial degradation. Here, we let the system

stay saturated as long as the performance of the un-augmented system is expected to be adequate.

Beyond this point, we apply a static AW to ensure the stability and performance of the saturated

system. The design point, gd, depends on how much input uncertainty the nominal closed-loop

can tolerate. The results of simulation for two standard examples show that the new scheme

can work better than the traditional anti-windup especially when actuator commands are only

moderately higher than saturation bounds.

APPENDIX

Lemma 1 ([3]). Given a square matrix D, if −2I +D+DT < 0, then I −D∆ is nonsingular

for all ∆ such that z 7→ ∆z belong to sector [0, I].

Consider u = Cux+Duww + (Duq −DuηΛ)q. We replace q by its value q = ∆u:

u = Cux+Duww + (Duq −DuηΛ)∆u
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where ∆ is the deadzone nonlinearity. Moving the u term to one side, we obtain

(I − (Duq −DuηΛ)∆)u = Cux+Duww .

Thus, for well-posedness and uniqueness of the solution, we need I−(Duq−DuηΛ)∆ nonsingular.

Then, the well-posedness condition for the static AW from Lemma 1 becomes −2I + (Duq −

DuηΛ) + (Duq −DuηΛ)T < 0 or in the weighted form

−2M +DuqM −DuηX +MDT
uq −XTDT

uη < 0. (21)

Note that (21) can be written as[
I I

] −M MDT
uq −XTDT

uη

DuqM −DuηX −M

 I

I

 < 0.

Then, block (2:3,2:3) of (8) is the sufficient condition for well-posedness.
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