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Abstract— This paper studies distributed solutions for an op-
timal resource allocation problem over networked systems
with connected graph communication topologies. The problem
setting consists of a group of agents in a network cooperatively
meeting a demand by supplying a resource whose commitment
incurs a cost on them. The objective in the optimal resource
allocation problem is to obtain a commitment value for each
agent such that the total cost, which is the sum of the costs
of the agents, is minimized. In this paper we discuss how
using ideas from Augmented Lagrangian method for convex
optimization problems with affine constrains, we can arrive at
a distributed solutions whose convergence guarantees holds for
networks where the local costs are convex. We also show that
if the local costs are all strongly convex and their gradients
are globally Lipschitz then the convergence guarantees are
exponential and the results can be extended to a special class
of time-varying network interaction topologies. Simulations
illustrate our results.

I. INTRODUCTION

In this paper, we focus on design of a distributed algorithm
for a class of in-network optimal resource allocation prob-
lem. In-network optimal resource allocation problem appears
in many optimal decision making tasks such as economic dis-
patch over power networks [1]–[3], optimal routing [4]–[7],
network resource allocation for wireless systems [8]–[10],
economic systems [11], and health care applications [12],
[13]. In optimal in-network resource allocation a group of
agents work together towards meeting a demand by each
committing a local resource. The goal here is to find the
optimal commitment value for each agent such that the
overall cost of the operation, which is consisted of the sum
of the local cost of each agent to provide its commitment,
is minimized. Desire for greater autonomy and privacy at
agent level and also for avoiding shortcomings such as large
data processing and data storage demand at the central node,
scalability and, more importantly, the existence of a single
failure point for the system have created a demand for
decentralized leader less algorithms for cooperative multi-
agent systems including optimization algorithms.
In many optimal resource allocation problems, the cost
is modeled as a convex function, therefore, the optimal
resource allocation problem is a convex optimization prob-
lem. In recent years, there has been a renewed attention
on decentralized algorithm design for in-network convex
optimization problems, and various continuous-time ( [14]–
[17]) and discrete-time (see e.g., [18]–[22]) are proposed.
The underlying principle in design of many of distributed
optimization algorithms is to have each agent to maintain
a copy of the global optimal decision variable and evolve
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this local copy using a local iterative algorithm consisted
of both local variables and and also the average of local
copies of the agent itself and its neighbors. In a network of
N agent, for optimal resource allocation problem, such an
approach will require each agent to maintain a copy of the
global variable which is of size N resulting in computational,
communication and storage costs of at least order N per
agent. Such a requirement is costly and unnecessary for
this problem as the agents only need to obtain their own
respective component of the global decision variable. This
approach is not suitable for optimal resource allocation
problem as here each agent i ∈ {1, . . . , N} is interested
in obtaining its own optimal commitment value x?i in the
optimal network variable x? = (x?1, · · · , x?1).
Distributed optimization algorithms targeting the optimal in-
network resource allocation problems are presented in [23] in
discrete-time form, and in [3], [24]–[26] in continuous-time
form. These algorithms require the agents to keep and evolve
only their respective component of the global decision vari-
able. However, [3], [23], [24] require the agents to transmit
the gradient of local cost functions directly to their neighbors
which makes these algorithms less favorable for privacy-
sensitive applications. The algorithms in [25], [26] do not
have such a requirement. However, the algorithm of [25]
comes with higher computational complexity. In comparison
to the algorithm we propose in this paper, the algorithm
of [26] requires one more variable to be transmitted to the
neighbors and also shows less favorable transient response
(see Section VI for a numerical example). Moreover, the
convergence guarantees of [26] are only for strictly convex
local cost functions. In the context of economic dispatch
problem, [27]–[29] offer distributed solutions for convex,
quadratic local cost functions for the power generators.
Our focus in this paper is to design a distributed algorithm
which solves the in-network resource allocation problem
with a low local computational complexity per agent. Also,
out of concern for the privacy of agents, we are interest
in designing an algorithm that does not require the agents
to communication any information about their local cost
functions to their neighbors. In this paper, we extend our
earlier work in [30] which proposes an algorithm with a
simple third order dynamics per agent, in which, agent arrive
at their own optimal commitment value by only exchanging
a logical variable with no need to share their local gra-
dients with their neighbors. Our contribution in this paper
includes proposing a novel algorithm which is designed
based on ideas from Augmented Lagrangian method in the
optimization literature (cf. e.g. [20], [32]) to produce better
transient behavior compared to [30]. We show that using
the Augmented Lagrangian method, we can extend our rig-



orous convergence guarantees from for only strictly convex
local costs to convex local cost functions. Our convergence
analysis is based on Lyapunov and LaSalle invariant set
methods. We also use semistability analysis results to show
that our algorithm is guaranteed to converge to a point in
the set of optimal decision values when the local costs
are convex. In the literature such guarantees are normally
for convergence to the set of optimal points as opposed to
a point in the set. Finally, we show that when the local
cost functions are strongly convex and their local gradients
are globally Lipschitz the convergence guarantees of our
proposed algorithm over connected graphs is exponential and
can also be extended to dynamic graphs. Due to the space
limitations, the proofs are omitted and will appear elsewhere.

II. NOTATIONS AND DEFINITIONS

We let 1n (resp. 0n) denote the vector of n ones (resp. n
zeros), and denote by In the n×n identity matrix. When clear
from the context, we do not specify the matrix dimensions.
We denote the standard Euclidean norm of vector x ∈ Rn

by ‖x‖ =
√
x>x. A differentiable function f : Rd → R is

convex over a convex set C ⊆ Rd iff (z − x)>(∇f(z) −
∇f(x)) ≥ 0 for all x, z ∈ C. When this inequality condition
is strict, we refer to the function as strictly convex and when
we have (z − x)>(∇f(z) − ∇f(x)) ≥ m(z − x)>(z − x)
for m ∈ R>0 and all x, z ∈ C we refer to the function f
as m−strongly convex. Here, ∇f(x) represents the gradient
of f . Function f : Rn → Rm is M -globally Lipschitz,
M ∈ R>0, iff ‖f(z)− f(x)‖ ≤M‖z− x‖ for all x, z ∈ Rn.
In a network of N agents, to distinguish and to emphasize
that a variable is local to an agent i ∈ {1, . . . , N}, we
use superscripts, e.g., f i(xi) is the local function of agent i
evaluated at its own local state xi. Moreover, if vi ∈ R is a
variable of agent i ∈ {1, . . . , N}, the aggregated vi’s of the
network is the vector v = [v1, · · · , vN ]> ∈ RN .
Next, we briefly review some relevant basic concepts from
algebraic graph theory following [33]. A weighted graph,
is a triplet G = (V, E ,A), where V = {1, . . . , N} is the
node set, E ⊆ V × V is the edge set, and A ∈ RN×N is a
weighted adjacency matrix such that aij > 0 if (i, j) ∈ E
and aij = 0, otherwise. An edge from i to j, denoted by
(i, j), means that agent j can send information to agent i.
A graph is undirected if (i, j) ∈ E anytime (j, i) ∈ E . An
undirected graph is called connected graph if aij = aji for
all i, j ∈ {1, . . . , N} and there is path from every node to
every other node in the network. The (out-) Laplacian matrix
of a graph is L = Diag(A1N ) − A. Based on the structure
of L, at least one of the eigenvalues of L is zero and the rest
of them have nonnegative real parts. Moreover, we always
have L1N = 0. A graph is connected iff 1>NL = 0, and
rank(L) = N − 1. Therefore, for a connected graph zero is
a simple eigenvalue of L. We denote the eigenvalues of L by
{λi}Ni=1, where λ1 = 0 and λi ≤ λj , for i < j.

III. PROBLEM STATEMENT

We consider the optimal resource allocation problem

x? = arg min
x∈RN

∑N

i=1
f i(xi), subject to (1a)

x1 + · · ·+ xN = b, (1b)

over a network of N agents, communicating with each other
over a connected graph topology G. Here, f i : R→ R is the
convex and differentiable local cost of agent i ∈ {1, . . . , N},
xi ∈ R is its resource, and b ∈ R is the demand that the
agents should meet cooperatively (see (1b)).
The objective in our distributed optimal resource alloca-
tion problem is to enable each agent i ∈ {1, . . . , N}
to obtain, in a distributed manner, x?i , the ith element of
x? = (x?1, · · · , x?N ) in (1). For agent i ∈ {1, . . . , N}, x?i
indicates its resource commitment for minimal collective cost
for the network. By distributed we mean that every agent
obtains its optimal operating point by only interacting with
its neighboring agents on the communication graph G. To this
end, we assume that every agent starts a local state xi ∈ R
with an initial guess xi(0) ∈ R and evolves it according to

ẋi = ci(t), (2)

until xi converges to x?i . To respect the requirement for
distribute operation, the driving command ci(t) can only be
a function of the local variable and the variables agent i
receives from its neighbors. Our objective, then, is to design
ci(t) of each agent i ∈ {1, . . . , N}. We make the following
assumption about the feasibility of the optimization prob-
lem (1).
Assumption 1: The optimization problem (1) has a finite
optimum f? = f(x?) with a x? ∈ Xfe = {x ∈ RN |x1 +
· · ·+xN =b}.
One can use (smooth or non-smooth) penalty function meth-
ods to address optimal resource allocation problem subject to
bounded resources, i.e., when the optimization problem (1)
is constrained by local convex inequality constraints xil ≤
xi ≤ xiu, where xil ∈ R and xiu ∈ R, with xil < xiu,
are, respectively the known lower and upper bounds on the
resource of each agent i ∈ {1, . . . , N}. In penalty function
method the inequality constraint is eliminated by adding a
weighted penalty function to the cost. Notice that when the
inequality constraints are local to each agent, the global cost
in the penalty method stays separable, a characteristics that is
normally required to develop distributed solutions. A smooth
penalty function method whose weight can be selected in
a distributed manner is proposed in [30], and can be used
here as well to address the optimal resource allocation with
bounded resources. For brevity, the details are eliminated.

IV. A CENTRAL SOLUTION FOR OPTIMAL RESOURCE
ALLOCATION PROBLEM

In this section, we review a central solution for the optimiza-
tion problem (1) which provides insights on how to construct
our distributed solution.
The KKT optimality conditions give the following necessary
and sufficient conditions to characterize the solution set of
the convex optimization problem (1).
Lemma 4.1: (Solution set of (1) (cf. [34] for proof)): Con-
sider the constrained optimization problem (1). Let f i : R→
R, i ∈ {1, . . . , N}, be a differentiable and convex function
on R. A point x? ∈ RN is a solution of (1) iff there exists a
y? ∈ R, such that

∇f i(x?i ) + y? = 0, i ∈ {1, . . . , N}, (3a)
x?1 + · · ·+ x?N − b = 0. (3b)



When all the local cost functions are strictly convex, the
solution (y?, x?) of (3) is unique. �

In general, solving the KKT equation set (3) in an analytical
manner is challenging. Therefore, iterative algorithms nor-
mally are employed to arrive to points satisfying the KKT
conditions starting from an arbitrary initial guesses. Let

L(y,x) = f(x) + y(x1 + · · ·+ xN − b), (4)

be the Lagrangian of optimization problem (1). Then, follow-
ing [35] we can show that when the cost functions are strictly
convex, the following saddle-point dynamics (5) converges
to the unique solution of (3), i.e.,

ẏ =
∂L(y,x)

∂y
= x1 + · · ·+ xN − b, (5a)

ẋi = −∂L(y,x)

∂xi
= −∇f i(xi)− y, i ∈ {1, . . . , N}, (5b)

from any initial condition y(0), xi(0) ∈ R, generates trajec-
tory t 7→ (y(t),x(t)) of (5) which converges to the unique
solution (y?, x?) of (3). The structure of the saddle point
dynamics (5) resembles that of the dual ascent methodology
in iterative discrete-time algorithms. It is well known in
the discrete-time optimization literature that the convergence
properties of dual ascent method can be improved via the
Augmented Lagrangian method, e.g., the convergence guar-
antees can be extended from only for strictly convex to,
indeed, convex functions (cf. e.g. [20], [32]). Augmented
Lagrangian algorithms start off with casting the optimization
problem (1) in equivalent form (for ρ ∈ R>0)

x? = arg min
x∈RN

∑N

i=1
f i(xi)+

ρ

2
‖x1+· · ·+xN−b‖2, s.t. (6a)

x1 + · · ·+ xN = b, (6b)

whose Lagrangian is

La(y,x) = f(x) +
ρ

2
‖(1>Nx− b)‖2 + y(1>Nx− b). (7)

Remark that the augmented cost (6a) is still convex and as a
result (6) is a convex optimization problem. We can construct
a saddle point dynamics below to solve (6)

ẏ =
∂La(y,x)

∂y
= x1 + · · ·+ xN − b, (8a)

ẋi = −∂La(y,x)

∂xi
= −∇f i(xi)− ρ(x1 + · · ·+ xN−b)−y,

(8b)

for i ∈ {1, . . . , N}. Interestingly, the convergence guarantees
for (8) holds for convex functions, as well. A simulation
study in Section VI (see Fig. ??) compares the perfor-
mance of the saddle point dynamical solver (5), which
is constructed from the Lagrangian (4) for the original
optimization problem (1), with the performance of saddle
point dynamical solver (8), which is constructed from the
Augmented Lagrangian (7) of the equivalent optimization
problem (6). In simulations we have observed that the
augmented solver produces a better transient response. This
can be attributed to the introduction of negative x terms in the
state equation (8b). The details regarding the central solver’s
convergence analysis are omitted for brevity, however, we
will discuss fully the formal evaluation of the effect of the

augmented term on the performance of the solver when we
study the convergence of our proposed distributed optimiza-
tion algorithm that solves (1).
The challenge that the Augmented Lagrangian approach
presents for distributed algorithm design is that the aug-
mented global cost function (6a) is no longer separable.
However, as we discuss next, our approach which makes use
of a distributed mechanism to construct the coupling term
x1 + · · ·+ xN − b in (8) effectively eliminates this concern.

V. DISTRIBUTED AUGMENTED LAGRANGIAN
ALGORITHM FOR OPTIMAL RESOURCE ALLOCATION

The following novel algorithm initialized at
xi(0), yi(0), vi(0) ∈ R such that

∑N
i=1 v

i(0) = 0, is
our solution for problem (1) over a network with connected
graph topology G,

v̇i =
∑N

j=1
aij(y

i − yj), (9a)

ẏi =(xi − b̄i)−
∑N

j=1
aij(y

i − yj)− vi, (9b)

ẋi =−∇f i(xi)− ρ (xi − b̄i)+ρ vi−yi, (9c)

for i ∈ {1, . . . , N} and
∑N

i=1 b̄
i = b. Remark that the

requirement
∑N

i=1 v
i(0) = 0 is trivially satisfied if each

agent i starts at vi(0) = 0, and
∑N

i=1 b̄
i = b can be satisfied

using b̄i = b/N , i ∈ {1, . . . , N} (another possibility is
b̄j = b and b̄i = 0, i ∈ {1, . . . , N}\{j}).
To demonstrate how algorithm (9) is related to the Aug-
mented Lagrangian solver (8), we first write algorithm (9) in
its equivalent representation as follows

v̇ =Ly, (10a)
ẏ =x− b̄− Ly − v. (10b)

ẋi =−∇f i(xi)−ρ ẏi−yi−ρ
∑N

j=1
aij(y

i − yj), (10c)

for i ∈ {1, . . . , N}. Then, remark that under aforementioned
initialization condition, if the execution of (9) over connected
graph converges to a point, i.e., as t → ∞ we get ẋi = 0,
ẏ = 0, v̇ = 0 and t 7→ (vi(t), yi(t), xi(t)) converges to
(vi, yi, xi), then we can write, for i ∈ {1, . . . , N},

0 = Ly ⇒ y = θ 1N , θ ∈ R, (11a)

0 = x−b̄−Ly−v ⇒ x1+· · ·+xN−b=0, (11b){
0 = −∇f i(xi)− yi − ρ

∑N
j=1aij(y

i − yj)
⇒ 0 = −∇f i(xi)− θ.

(11c)

The relation in (11a) is deduced from rank(L) = N − 1 and
L1N = 0, the relation in (11b) is the result of left multiplying
the equality equation to the left of the arrow by 1>N and using
the initialization condition along with 1>L = 0, and finally
the last relation in (11c) is obtained from substituting for
yi from the first equation. As a result the ultimate point
(vi, yi, xi) = (x?i − b̄i, y?, x?i ), i ∈ {1, . . . , N}, where
(y?, x?) is any solution of the KKT conditions (3) of the
optimal resource allocation problem (1). This means that
under stated initial conditions, if algorithm (9) is convergent,
it solves the optimization problem (1) in a distributed manner.
In the following, we shall formally study the convergence



of the algorithm (9) using Lyapunov stability analysis tool.
However, before our analysis we comment on the idea behind
the composition of distributed algorithm (9) which is origi-
nated from the central Augmented Lagrangian algorithm (8).
To observe this relation, let us multiply (10a) and (10b) by
1> from left hand side to obtain∑N

i=1
v̇i = 0 ⇒

∑N

i=1
vi(t) =

∑N

i=1
vi(0) = 0, (12a)∑N

i=1
ẏi = x1 + · · ·+ xN − b, (12b)

which indicates that the dynamics of the sum of yis du-
plicates the Lagrange multiplier dynamics (8a) of the central
Augmented Lagrangian method. Here, we used 1>NL = 0 for
connected graphs. As discussed above, in a convergent (9),
ultimately all the yi converge to the same value indicating
that ultimately every agent obtains a scaled local copy
of (8a). Moreover, ultimately, the last term in the right hand
side of (10c) also disappears and every agent’s xi state
dynamics becomes a local copy of (8b) of the Augmented
Lagrangian central algorithm.
The preceding discussion sketched the idea behind the con-
struction of the distributed algorithm (9). In the following,
we provide a rigorous study of the stability and convergence
properties of the algorithm (9) using Lyapunov stability anal-
ysis tools. In our proofs, we use the fact that for connected
graphs

0 < λ2IN−1 ≤ R>LR ≤ λN IN−1, (13)

holds, where R ∈ RN×(N−1) is a matrix that makes
[ 1√

N
1N R] ∈ RN×N an orthonormal matrix. Here, recall

that λ2 and λN are, respectively, the smallest non-zero and
the largest eigenvalues of the Laplacian matrix L. Remark
that R satisfies

r=
1N√
N
, RR>+rr>= IN , r>R=0, R>R= IN−1. (14)

Theorem 5.1: (Asymptotic convergence of (9) over con-
nected graphs): Let G be a connected graph, each f i, i ∈
{1, . . . , N}, be convex and differentiable and

∑N
i=1 b̄

i =
b in (9). Then, for each i ∈ {1, . . . , N}, starting from
yi(0), vi(0), xi(0) ∈ R with

∑N
i=1 v

i(0) = 0, the algo-
rithm (9) over G, for any ρ ∈ (0, 1), makes t 7→ (yi(t), xi(t))
to converge asymptotically to (y?, x?i ), where (y?, x?) is a
point satisfying the KKT conditions (3) of problem (1)

Sketch of the proof : Let h(χ) = ∇f(χ + x?)−∇f(x?).
Then, represent (9) in the equivalent form

u̇1 = 0, u1(0) = 0, (15a)

u̇2:N =R>LRz2:N , (15b)

ż1 = r> χ, (15c)

ż2:N =R>χ− R>LRz2:N − u2:N , (15d)
χ̇ = − h(χ)−ρχ+ρRu2:N − rz1 − Rz2:N , (15e)

using the change of variables[
u1

u2:N

]
=

[
r>

R>

]
(v−(x?−b̄)),

[
z1
z2:N

]
=

[
r>

R>

]
(y−y?1N ),

χ = x−x?, (16)

where (y?, x?) is a solution of the KKT conditions (3). Here,
we used r>v = 0 which is the result of (12a) together with

the given initial conditions. Remark that (15a) corresponds
to the constant of motion (12a). To study the stability in the
other variables, consider the candidate Lyapunov function

V (u2:N , z,χ) =
1

2

(
u>2:N (R>LR)−1u2:N +z21+χ>χ (17)

+ (1− ρ) z>2:Nz2:N + ρ (z2:N + u2:N )>(z2:N +u2:N )
)
.

The rest of the proof relies on showing that V̇ ≤ 0 along the
trajectories of (15b)-(15e). Next, we invoke the invariant set
stability results to prove that the trajectories of (15b)-(15e)
converge to its set of equilibrium points. After that, we use
the semistability results (c.f., [36, Section 4.7]) to show that
the convergence guarantee is in fact to a point in this set. To
invoke semistability results, we show in the Appendix that
all the equilibrium points of (15b)-(15e) are Lyapunov stable.
Note that (15b)-(15e) being semistable implies that starting
from any initial condition, the trajectories of (15b)-(15e)
converge to one of its equilibrium points. Then, given (16)
and (15a), we conclude that starting from stated initial
conditions in the statement, the trajectories of (9) converge,
as t → ∞, to a point where (v̇ = 0, ẏ = 0, ẋ = 0). As,
we showed in (11) and the discussion following it, under the
stated initial condition, as t→∞, the limit point (vi, yi, xi),
i ∈ {1, . . . , N} that satisfies (v̇ = 0, ẏ = 0, ẋ = 0) in (9)
is equal to (x?i − b̄i, y?, x?i ), where (y?, x?) is a solution of
the KKT conditions (3) of the optimal resource allocation
problem (1). Notice that the point the algorithm converges
to is not necessarily the one that we used in (16). �

In Theorem (5.1), the local cost functions are assumed to
be convex. Next, we show that when the local cost functions
are strongly convex and their gradients are globally Lipschitz,
algorithm (9) under appropriate initialization converges to the
solution of the optimal resource allocation problem (1) ex-
ponentially fast. Recall that because the local cost functions
are strongly convex, the minimizer of (1) is unique.
Proposition 5.1: (Exponential convergence of (9) over con-
nected graphs): Let G be a connected graph and

∑N
i=1 b̄

i = b
in (9). Additionally, assume that each f i, i ∈ {1, . . . , N},
is differentiable and mi-strongly convex and has M i-
Lipschitz gradient where mi,M i ∈ R>0. Then, for each
i ∈ {1, . . . , N}, starting from yi(0), vi(0), xi(0) ∈ R with∑N

i=1 v
i(0)=0, the algorithm (9) over G, for any ρ ∈ (0, 1),

makes t 7→ (yi(t), xi(t)) to converge exponentially fast to
(y?, x?i ) as t→∞, where, (y?, x?) is the unique solution of
the KKT conditions (3) of problem (1).
The extension of the results in Proposition 5.1 to the time-
varying connected graph topologies G(t) whose adjacency
matrices are uniformly bounded and piecewise constant is
immediate. For such graphs, with P being the index set of
all possible realizations of G(t), we can write

0 < (λ2)minIN−1 ≤ R>LpR ≤ (λN )maxIN−1. (18)

where (λ2)min = min
p∈P
{λ2(Lp)} and (λ2)max =

max
p∈P
{λ2(Lp)}. Then, because the proof of Proposition 5.1

relies on a Lyapunov function that has no dependency on
the systems parameters and its derivative is negative definite
with a quadratic upper bound in which λ2 is replaced by
(λ2)min, the proof can be deduced from [37, Theorem 4.10].
The proof details are omitted for brevity.
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Fig. 1: The graph used in the simulation (adjacency weights are 1).

Lemma 5.1 (Convergence of (9) over dynamically changing
connected graphs): Let G be a time-varying connected graph
at all times whose adjacency matrix is uniformly bounded
and piecewise constant. Moreover, let

∑N
i=1 b̄

i = b in (9).
Additionally, assume that each f i, i ∈ {1, . . . , N}, is differ-
entiable and mi-strongly convex and has M i-Lipschitz gra-
dient where mi,M i ∈ R>0. Then, for each i ∈ {1, . . . , N},
starting from yi(0), vi(0), xi(0) ∈ R with

∑N
i=1 v

i(0) = 0,
the algorithm (9), over G for any ρ ∈ (0, 1) makes t 7→
(yi(t), xi(t)) to converge exponentially fast to (y?, x?i ) as
→ ∞, where (y?, x?) is the unique solution of the KKT
conditions (3) of problem (1).

VI. SIMULATIONS

We consider the numerical example of [30] for an economic
dispatch problem for a group of 6 generators interacting over
a connected graph shown in Fig. 1. The local cost function
for each agent is given by f i(xi) = aixi2 + bixi + ci,
where xi ∈ R represents the power generated by agent
i. Here, ai, bi and ci are constant coefficients with the
same values listed in [30, Section 6], selected according to
the IEEE 118-bus test model’s generators located at buses
(4, 10, 18, 26, 54, 69). We assume that the demand load is
600 MW. Fig. 2 compares the response of the distributed
solver (9) with augmented term with weight ρ = 0.5 vs.
when it is implemented with no augmentation term, i.e.,
when ρ = 0. As plots in Fig. 2 show, the Augmented La-
grangian solver is able to remove the undesirable oscillatory
behavior from the transient response and to produce faster
convergence to the constraint manifold. Similar trend can be
observed in responses of the central saddle point dynamical
solver (5) and the central Augmented Lagrangian saddle
point dynamical solver (8) (due to space limitations the plots
are not included). Fig.3 demonstrates the performance of the
algorithm in [26].

VII. CONCLUSIONS

In this paper we considered an optimal resource allocation
problem over a network of N agents communicating with
each other over a connected graph. We presented a novel
distributed algorithm to solve this problem. To improve the
performance of our dynamical solver we invoked the method
of Augmented Lagrangian from the convex optimization
literature. We showed that using this method the response of
the algorithm can be improved and also, the rigorous con-
vergence guarantees for the algorithm can be extended from
only for strictly convex local cost functions to convex local
cost functions. In the case of convex local cost functions, it
is possible that the optimal resource allocation problem to
have infinite number of minimizers. We used results from
semistability analysis to show that the convergence of our
algorithm is indeed to a point in the set of minimizers of
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Fig. 2: Comparison between the performance of the distributed
solver (9) when it is implemented with ρ = 0 and when it is
implemented with ρ = 0.5, over the connected graph depicted
in Fig. 1. Both simulations are started from same initial conditions.
The colored curved plots depict the time history of the decision vari-
able of each agent. Horizontal lines depict the centralized solution
obtained using Matlab’s constraint optimization solver ‘fmincon’.
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Fig. 3: The colored curved plots depict the time history of the
decision variable of each agent when they implement algorithm
of [26] over the connected graph depicted in Fig. 1. Horizontal lines
depict the centralized solution obtained using Matlab’s constraint
optimization solver ‘fmincon’. Compared to (9), this algorithm
demonstrates an oscillatory transient response and lower conver-
gence rate for the demand equation.

the optimal resource allocation problem. When the local cost
functions are strongly convex and their gradients are globally
Lipschitz, we showed that our algorithm has exponential
convergence guarantees. Our future work includes the event-
triggered communication implementation of our proposed
algorithm, characterization of its privacy preservation prop-
erties and rigorous and details analysis of bounded resource
optimal resource allocation problem.

APPENDIX

COMPLEMENTARY PART TO THE PROOF OF THEOREM 5.1

We show that all the equilibrium points of (15b)-(15e), i.e.,
the members of

O =
{

(u2:N , z1, z2:N ,χ) ∈ RN−1 × R× RN−1 × RN
∣∣

z2:N = 0, r>χ = 0, R>χ−u2:N = 0, h(χ)+rz1 = 0
}
,

are all Lyapunov stable. To study the stability of any equi-
librium point (u2:N , z1, z2:N ,χ) ∈ O, we transfer that



equilibrium point to the origin using p = u2:N−u2:N , ℵ =
χ − χ, q1 = z1 − z1, q2:N = z2:N − z2:N , where q =
(q1,q2:N ), and write (15b)-(15e) in the new coordinate as

ṗ = R>LRp2:N , (19a)

q̇1 = r> ℵ, (19b)

q̇2:N = R>ℵ− R>LRq2:N − p, (19c)

ℵ̇ = −h̃(ℵ)−ρℵ+ρRp− rq1 − Rq2:N , (19d)

where

h̃(ℵ) = ∇f(ℵ+χ+x?)−∇f(χ+x?). (20)

To study the stability of the origin in (19), we use the
Lyapunov candidate function (17) in which (u2:N , z,χ) is
replaced, respectively, with (p,q,ℵ). Taking the derivative
of this V along the trajectories of (19), gives

V̇ =−(1− ρ)q2:NR>LRq2:N − ℵ>h̃(ℵ)− ρℵ>rr>ℵ
− ρ (R>ℵ− p)>(R>ℵ− p).

Convexity of local cost functions gives ℵi(∇f i(ℵi + χi +
x?i )−∇f i(χi +x?i ))) = (ℵi +χi +x?i − (χi +x?i ))(∇f i(ℵi +
χi + x?i )−∇f i(χi + x?i ))) ≥ 0, i ∈ {1, . . . , N} for all
t ∈ R≥0, which then gives ℵ>h̃(ℵ) ≥ 0 for all ℵ ∈ RN

(recall (20)). Moreover, because the network topology is
a connected graph we have R>LR > 0. Therefore, we
conclude that along the trajectories of (19) we have V̇ ≤ 0.
Therefore, any (u2:N , z1, z2:N ,χ) ∈ O is a Lyapunov stable
equilibrium point. �
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