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Abstract— For a team of mobile robots with limited onboard
resources, we propose a partially decentralized implementation
of an extended Kalman filter for cooperative localization. In
the proposed algorithm, unlike a fully centralized scheme
that requires, at each timestep, information from the entire
team to be gathered together and be processed by a single
device, we only require that the robots communicate with a
central command unit at the time of a measurement update.
In addition, the computational and storage cost per robot in
terms of the size of the team is reduced to O(1). Moreover, the
algorithm is robust to occasional in-network communication
link failures while the estimation update of the robots receiving
the update message is of minimum variance. We demonstrate
the performance of the algorithm in simulations.
Keywords: Cooperative localization; limited onboard re-
sources; message dropouts.

I. INTRODUCTION

The objective of cooperative localization (CL) is to increase
the localization accuracy of a team of mobile robots by
jointly estimating their locations using intra-team relative
measurements. This technique, unlike classical beacon-based
localization algorithms [1] or fixed feature-based Simulta-
neous Localization and Mapping algorithms [2], does not
rely on external features of the environment. As such, this
approach is an appropriate localization strategy in applica-
tions that take place in a priori inaccessible and uncharted
environments where features are dynamic or not revisited as
well as those applications with no or intermittent GPS access.
A major concern in developing any CL algorithm with an
efficient communication strategy is how to keep an accurate
account of the intrinsic cross-correlations of state estimations
without resorting to all-to-all multi-robot communications
at each time-step. Accounting for the cross-correlations is
crucial for both filter consistency and also expanding the
benefit of an update of a robot-to-robot measurement to the
entire team. The problem becomes more challenging if in-
network communications fail due to external events such
as obstacle blocking or limited communication ranges. In
this paper, we look at such issue by proposing a partially
decentralized filtering strategy.
Fully centralized CL schemes, at each time-step, gather and
process information from the entire team at a single device,
either a leader robot or a fusion center (FC), and broadcast
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back the estimated location results to each robot [3], [4].
Various decentralized CL (D-CL) algorithms have also been
proposed in the literature. In [5], a suboptimal algorithm
where only the robot obtaining the relative measurement
updates its states is proposed. Here, a bank of Extended
Kalman Filters (EKFs) together with an accurate book-
keeping of robots involved in previous updates is maintained
by each robot to produce consistent estimates. Although this
method does not impose a particular in-network communi-
cation graph, its computational complexity, large memory
demand, and the growing size of information needed at
each update time are the main drawbacks. Alternatively,
the computation of components of a centralized CL can
be distributed among team members. For example, this
decentralization can be conducted as a multi-centralized
CL, wherein each robot broadcasts its own information to
the entire team, which later reproduce the centralized pose
estimates acting as a FC [6]. Besides a high-processing
cost for each robot, this scheme requires all-to-all robot
communication at the time of each information exchange.
A D-CL algorithm distributing computations of an EKF CL
algorithm is proposed in [7] where propagation stage is
fully decentralized by splitting each cross-covariance term
between the corresponding two robots. However, at update
times, the separated parts should be combined, requiring
an all-to-all robot communication. Another D-CL algorithm
based on decoupling the propagation stage of an EKF CL
using new intermediate variables is proposed in [8]. But here,
unlike [7], at update stage, each robot can locally reproduce
the updated pose estimate and covariance of the centralized
EKF after receiving an update message only from the robot
that has made the relative measurement. Subsequently, [9]
presents a maximum-a-posteriori (MAP) D-CL algorithm
in which all the robots in the team calculate parts of the
centralized CL.
The algorithms above all assume that communication mes-
sages are delivered, as prescribed, perfectly all the time. A D-
CL approach equivalent to a centralized CL, when possible,
that handles both limited communication ranges and time-
varying communication graphs is proposed in [10]. This
technique uses an information transfer scheme wherein each
robot broadcasts all its locally available information (the past
and present measurements, as well as past measurements pre-
viously received from other robots) to every robot within its
communication radius at each time-step. The main drawback
of this algorithm is its high communication and storage cost.
CL techniques for non-Gaussian noises are discussed in [11],
[12] but they do not address the communication failure.



Motivated by the limited on-board resources in micro-robots,
and at the same time, with a desire to eliminate the com-
munication per time-step requirement of fully centralized
CLs, we propose a partially decentralized CL strategy with
fully decoupled propagation stage and centralized update
through a central command unit (CCU). Our algorithm is
an implementation of an EKF for CL and builds on the EKF
decoupling strategy proposed in [8]. The fully decentralized
algorithm of [8] requires an O(N2) storage and O(N2) per
measurement update processing cost per robot, where N is
the size of the cooperative robotic team. These costs can be
reduced to O(N) with the penalty of bigger communication
message sizes. Without such a cost, maintaining the intrinsic
cross-covariances of the CL strategy in a fully decentralized
manner is not possible. In the proposed algorithm here, we
put the CCU in charge of maintaining the cross-covariances
and the calculation of the update gains, and reduce the
storage and processing cost per robot to O(1). Also by fully
decoupling the propagation stage, we reduce the communica-
tion incidences to exteroceptive measurement update times.
Our next contribution is to show that the proposed partially
D-CL strategy is also robust to occasional message dropouts
in the network, which is not the case in the previous fully
decentralized scheme of [8].

Notations: the set of n×n real positive definite matrices is
Mn. The n×m zero matrix (when m = 1, we use 0n) is
0n×m while the n×n identity matrix is In. The transpose
of matrix A ∈ Rn×m is A>. The block diagonal matrix of
set of matrices A1, . . . ,AN is Diag(A1, · · · ,AN ). For finite
sets V1 and V2, V1\V2 is the set of elements in V1, but not
in V2. The cardinality of a finite set V is |V |. In a team
of N robots, the local variables of robot i are distinguished
by the superscript i, e.g., xi is the pose (i.e., position and
orientation) of robot i, x̂i is its pose estimate, and Pi is
the covariance matrix of its pose estimate. We use the term
cross-covariance to refer to the correlation terms between
two robots in the covariance matrix of the entire team,
and demonstrate the cross-covariance of the pose vectors
of robots i and j by Pij . We denote the propagated and
updated variables, say x̂i, at time-step k by x̂i-(k) and x̂i+(k),
respectively. We drop the time-step argument of the variables
as well as matrix dimensions whenever they are clear from
the context. The aggregated vector of local vectors pi ∈ Rni

is p = (p1, . . . ,pN ) ∈ Rd, d=
∑N

i=1 n
i.

II. DESCRIPTION OF THE MOBILE ROBOT TEAM

We consider a team of N mobile robots with communication,
processing and measurement capabilities. The robots are only
communicating with a CCU that oversees the operation. This
CCU can also be a team member with greater processing
and storage capabilities. The assumption is that the CCU
can reach every robot in the team, but the communication
lines can be interrupted from time to time. Every robot has
a detectable unique identity (UID) which, without loss of
generality, here we assume to be a unique integer belonging
to the set V = {1, . . . , N}. Using a set of proprioceptive
sensors every robot i ∈ V measures its self motion and uses

it to propagate its equations of motion

xi(k + 1) = f i(xi(k),ui(k)) + gi(xi(k))ni(k),

where xi ∈ Rni , ui ∈ Rmi , and ni ∈ Rpi are, respectively,
the pose vector, the input vector and the process noise vector
of robot i. Here, f i(xi,ui) and gi(xi), are, respectively, the
system function and process noise coefficient function of
the robot i ∈ V. The robotic team can be heterogeneous,
nevertheless, the collective motion equation of the team reads

x(k + 1) = f(x(k),u(k)) + g(x(k))n(k), (1)

where, f(x,u) = (f1(x1,u1), · · · , fN (xN ,uN )) and g(x) =
Diag(g1(x1), · · · ,gN (xN )). The process noises ni, i ∈ V,
are independent zero-mean white Gaussian processes with
a known positive definite variance Qi(k) = E[ni(k)>ni(k)].
Every robot also carries exteroceptive sensors to monitor
the environment to detect, uniquely, the other robots in the
team and take relative measurements from them, e.g., range
or bearing or both. We model the relative measurement
collected by robot i from robot j as

zij(k + 1) = hij(x
i(k),xj(k)) + νi(k), zij ∈ Rniz , (2)

where hij(x
i,xj) is the measurement model and νi is the

measurement noise of robot i∈V, assumed to be independent
zero-mean white Gaussian processes with known covariance
Ri(k)=E[νi(k)>νi(k)]. All noises are assumed to be white
and mutually uncorrelated. We show below how using an
EKF, relative measurements between robots are used to
improve the propagated states of the system. Here, we
assume that all the sensor measurements are synchronized.

III. BENCHMARK CENTRALIZED CL ALGORITHM

In this section, we review the centralized EKF CL algorithm
of [7], which is a straightforward application of EKF over the
collective motion model (1) using the relative measurement
model (2). The propagation stage of this algorithm is

x̂-(k + 1) = f(x̂+(k),u(k)), (3a)

P-(k + 1) = F(k)P+(k)F(k)> + G(k)Q(k)G(k)>, (3b)

where F = Diag(F1, · · · ,FN ), G = Diag(G1, · · · ,GN ) and
Q = Diag(Q1, · · · ,QN ), with Fi = ∂

∂xi
f(x̂i+(k),ui(k)) and

Gi = ∂
∂xi

g(x̂i+(k)), for all i ∈ V.

If there exists a relative measurement in the team at some
given time k + 1, the states are updated as follows. The
measurement residual and its covariance are, respectively,

ra = zab − hab(x̂
a-(k + 1), x̂b-(k + 1)), (4a)

Sab =Hab(k+1)P-(k+1)Hab(k+1)>+Ra(k+1), (4b)

where
Hab(k) =

[1
0
···· · ·

a

−H̃a (k)
a+1

0
···· · ·

b

H̃b(k)
b+1

0
···· · ·
]
,

H̃a(k) = − ∂

∂xa
hab(x̂

a-(k), x̂b-(k)), (5)

H̃b(k) =
∂

∂xb
hab(x̂

a-(k), x̂b-(k)).

Then, the Kalman gain, collective pose update and covari-
ance update equations for the team, respectively, are:

K(k+1)=P-(k+1)Hab(k+1)>Sab
−1. (6a)

x̂+(k+1) =x̂-(k+1)+K(k+1)ra, (6b)

P+(k+1) =P-(k+1)−K(k+1)SabK(k+1)>. (6c)



Algorithm 1 Centralized EKF CL
Require: Initialization (k = 0): For i ∈ V , the algorithm is initialized at

x̂
i+

(0)∈Rn
i
, P

i+
(0)∈Mni ,P

+
ij(0) = 0ni×nj , j∈V\{i}.

Iteration k
1: Propagation: for i ∈ V , the propagation equations are:

x̂
i-

(k+1)= f
i
(x̂
i+

(k),u
i
(k)), (7a)

P
i-

(k+1)= F
i
(k)P

i+
(k)F

i
(k)
>
+G

i
(k)Q

i
(k)G

i
(k)
>
, (7b)

P
-
ij(k+1)= F

i
(k)P

+
ij(k)F

j
(k)
>
, j ∈ V\{i}. (7c)

2: Update: While there are no relative measurements no update happens:

x̂
+
(k + 1) = x̂

-
(k + 1), P

+
(k + 1) = P

-
(k + 1).

If a robot a takes a relative measurement from robot b, proceed by steps below.
The measurement residual and its covariance are, respectively, (4a) and

Sab = R
a
(k + 1) + H̃a(k + 1)P

a-
(k + 1)H̃a(k + 1)

>

+ H̃b(k + 1)P
b-

(k + 1)H̃b(k + 1)
>

− H̃b(k + 1)P
-
ba(k + 1)H̃a(k + 1)

>

− H̃a(k + 1)P
-
ab(k + 1)H̃b(k + 1)

>
. (8)

The estimation updates for the centralized EKF are:

x̂
i+

(k+1)=x̂
i-

(k+1) + Ki(k+1)r
a
(k+1), (9a)

P
i+

(k+1)=P
i-
(k+1)−KiSab(k+1)Ki(k+1)

>
, (9b)

P
+
ij(k+1)=P

-
ij(k+1)−Ki(k+1)Sab(k+1)Kj(k+1)

>
, (9c)

where i ∈ V , j ∈ V\{i} and

Ki = (P
-
ib(k + 1)H̃

>
b −P

-
ia(k + 1)H̃

>
a )Sab

−1
. (10)

3: k ← k + 1

Let K=
[
K>1 , · · · ,K>N

]>, where Ki∈Rni×niz is the portion of
the Kalman gain used to update the pose estimate of the robot
i ∈ V. Then, we can express the collective centralized EKF
CL in terms of its robot-wise components, as shown in Al-
gorithm 1. To process multiple synchronized measurements,
we use sequential updating (c.f. e.g., [13, ch. 3],[14]). Note
that, because of the inherent coupling in cross-covariance
terms (7c) and (9c), Algorithm 1 can not be implemented
in a decentralized manner. Next, we propose an implement
of the EKF CL algorithm where the propagation stage is
implemented locally and the updates are dictated by a CCU.

IV. PARTIALLY DECENTRALIZED IMPLEMENTATION OF
THE EKF FOR CL

In this section, we present an implementation of the EKF for
CL where the propagation stage is fully decentralized but the
updates are carried out in centralized manner. Our scheme
builds on the decoupling method of [8] which results in a
decentralized implementation of Algorithm 1 where the robot
making the relative measurement is designated as the interim
master and provides the rest of the team with the information
they need to update their pose, x̂i+, and covariance, Pi+

matchin (9a) and (9b). The algorithm in [8] results in an
O(N2) storage and O(N2 × Nz), processing cost per robot
with Nz the total number of relative measurement in the
team in a given time. The following partially decentralized
implementation reduces this cost to O(1) per robot by using a
CCU to maintain team cross-covariances, which is the source
of high processing and storage costs.

We start by reviewing the EKF decoupling approach of [8],
which uses the following assumption that is valid for many
mobile robot models.

Assumption 1: Fi(k) is invertible for all k ≥ 0 and i ∈ V.

Let Φi ∈ Rni×ni , for all i ∈ V, be a time-varying variable
that is initialized at Φi(0) = Ini , which evolves as:

Φi(k + 1) = Fi(k)Φi(k). (11)

Then, we write the propagated cross-covariances (7c) as:

P-
ij(k + 1) = Φi(k + 1)P̄ij(k)Φj(k + 1)>, (12)

where P̄ij ∈ Rni×nj , for i, j ∈ V and i 6= j, is a time-varying
variable that is initialized at P̄ij(0) = 0ni×nj . When there is
no relative measurement at time k+1, (12) results in P̄ij(k+
1) = P̄ij(k). Next, we derive an expression for P̄ij(k + 1)
when there is a in-network relative measurement at time k+1,
such that at time k + 2 we could write P-

ij(k + 2) = Φi(k +
2)P̄ij(k+1)Φj(k+2)>. For this notice that we can rewrite the
update equations (8) and (10) of the centralized CL algorithm
by replacing the cross-covariance terms by (12):

Sab = Ra + H̃aPa-(k + 1)H̃
>
a + H̃bP

b-(k + 1)H̃
>
b −

H̃aΦa(k + 1)P̄ab(k)Φb(k + 1)>H̃
>
b − (13)

H̃bΦ
b(k + 1)P̄ba(k)Φa(k + 1)>H̃

>
a ,

and the Kalman gain is

Ki = Φi(k + 1)D̄i(Sab)
− 1

2 , i ∈ V,

where

D̄i =(P̄ib(k)Φb>H̃
>
b −P̄ia(k)Φa>H̃

>
a )Sab

− 1
2 , i∈V\{a,b},

(14a)

D̄a =(P̄ab(k)Φb>H̃
>
b −(Φa)−1Pa-H̃

>
a )Sab

− 1
2, (14b)

D̄b =((Φb)−1Pb-H̃
>
b −P̄ba(k)Φa>H̃

>
a )Sab

− 1
2 . (14c)

Notice that due to Assumption 1, Φi(k), for all k ≥ 0 and
i ∈ V, is invertible. Next, for i 6= j and i, j ∈ V, we let

P̄ij(k + 1) = P̄ij(k)− D̄iD̄
>
j . (15)

Then, the cross-covariance update (9c) can be rewritten as:

P+
ij(k + 1) = Φi(k + 1)P̄ij(k + 1)Φj(k + 1)>.

Therefore, at time k + 2, the propagated cross-covariances
satisfy (12) where k is replaced by k + 1. As such, we
can reproduce the effect of the cross-covariance terms of
the centralized CL using the variables Φi(k)’s and P̄ij’s.
Let r̄a = (Sab)

− 1
2 ra, then the updated state estimate and

covariance matrix in the new variables reads as, for i ∈ V,

x̂i+(k + 1) = x̂i-(k + 1) + Φi(k + 1) D̄i r̄a, (16)

Pi+(k + 1) = Pi-(k + 1)−Φi(k + 1)D̄iD̄
>
i Φi(k + 1)>,

Using the decompositions above, our proposed partially
decentralized CL algorithm is as follows. Every robot i ∈ V
maintains and propagates it propagated state estimation (7a)
and its corresponding covariance matrix (7b), as well as,
variable Φi (11). Notice that all these variables depend
only on local data. Therefore, the propagation stage is
fully decoupled. The CCU is in charge of maintaining and
updating P̄ij’s. When there is a relative measurement in
the network, say robot a takes relative measurement from



robot b, robot a informs the CCU. Then, the CCU starts the
update procedure by taking the following actions. It acquires
(zab ∈ Rnaz , x̂a-(k + 1) ∈ Rna , Φa(k + 1) ∈ Rna×na ,
Pa-(k+1) ∈ Mna ) from robot a and (x̂b-(k+1) ∈ Rnb ,
Φb(k + 1) ∈ Rnb×nb , Pb-(k + 1) ∈ Mnb ) from robot
b. Then, using this information, which we refer to it as
landmark-message, along with its locally maintained P̄ij’s, it
calculates ra, Sab and D̄i, i ∈ V , from respectively, (4a), (13)
and (14). Then, the CCU sends to each robot i ∈ V
its corresponding update message (D̄i r̄a, D̄iD̄

>
i ) so that

the robot can update its local estimates using (16). It also
updates its local P̄ij’s using (15), for all i ∈ V\{N}
and j ∈ {i + 1, · · · , N}–because of the symmetry of the
covariance matrix of the network we only need to save, e.g.,
the upper triangular part of this matrix. Algorithm 2 presents
this partially decentralized implementation of EKF for CL
when there is only one relative measurement incident at a
time. This algorithm operates based on the assumption that
at the time of measurement update, all the robots can receive
the update message of the CCU. This requirement is relaxed
in proceeding section, where we study the robustness of our
proposed algorithm to message dropouts.
To include absolute measurements in Algorithm 2 the CCU
only needs the information of the robot that has obtained the
absolute measurement. It proceeds with the similar updating
procedure as outlined above and issues the corresponding
update message (D̄i r̄a, D̄iD̄

>
i ) to every robot i ∈ V .

For multiple synchronized measurements, we use the sequen-
tial updating procedure. One can expect that the updating
order must not dramatically change the results (cf. [14, page
104] and references therein) Here, we assume

Assumption 2: CCU has a pre-specified sequential-updating-
order guideline, which indicates the priority order for imple-
menting the measurement update.
Remark 4.1 (Multiple synchronized relative measurements):

For clarity of exposition, first, following [14], we briefly
review the sequential updating in Kalman filters. Let Ns
synchronous sensor measurements at time k be represented
by zj , j ∈ {1, · · · , Ns}. Let

x̂+(k, 0) = x̂-(k), P+(k, 0) = P-(k).

The update at time k is x̂+(k) = x̂+(k,Ns) and P+(k) =
P+(k,Ns), obtained from the following procedure:

x̂+(k, j) =x̂+(k, j − 1) + K(k, j)r(k, j),

P+(k, j) =P+(k, j − 1)−K(k, j)S(k, j)K(k, j)>,

for j ∈ {1, · · · , Ns}, where r(k, j), S(k, j), and K(k, j)

are, respectively, the measurement innovation, the innovation
covariance and the Kalman gain calculated using x̂+(k, j−1)

and P+(k, j−1). Implementing the decomposition introduced
above, the sequential updating by CCU is described in
Algorithm 3, where we used the following notation. Let VM

be the set of the robots that have made an exteroceptive
measurement at time k + 1, VL(i) be the landmark robots of
robot i ∈ VM, and V̄ be the set of all the robots taken relative
measurements and landmark robots. We assume that the

Algorithm 2 Partially D-CL
Require: Initialization (k = 0): Every robot i ∈ V initializes its filter at

x̂
i+

(0) ∈ Rn
i
, P

i+
(0) ∈ Mni , Φ

i
(0) = Ini .

The CCU initializes

P̄
i
ij(0) = 0ni×nj , i ∈ V\{N}, j ∈ {i + 1, · · · , N}.

Iteration k
1: Propagation: Every robot i ∈ V propagates the variables below

x̂
i-

(k+1)= f
i
(x̂
i+

(k),u
i
(k)),

Φ
i
(k+1)=F

i
(k)Φ

i
(k), (17)

P
i-

(k+1)=F
i
(k)P

i+
(k)F

i
(k)
>
+G

i
(k)Q

i
(k)G

i
(k)
>
.

2: Update: while there are no relative measurements in the network, every robot
i ∈ V updates its variables as:

x̂
i+

(k + 1) = x̂
i-

(k + 1), P
i+

(k + 1) = P
i-

(k + 1), (18)

and the CCU proceeds with

P̄
i
ij(k + 1) = P̄

i
ij(k), j ∈ V\{i}. (19)

If there is a robot a that makes a measurement with respect to another robot b,
then robot a informs the CCU. The CCU asks for the following information from
robot a and b, respectively,

Landmark-messagea =
(
zab, x̂

a-
(k + 1),P

b-
(k + 1),Φ

a
(k + 1)

)
,

Landmark-messageb =
(
x̂
b-

(k + 1),P
b-

(k + 1),Φ
b
(k + 1)

)
. (20)

Given the Landmark-message , the CCU calculates

Sab = R
a

+ H̃aP
a-

H̃
>
a + H̃

>
b P

b-
H̃b

− H̃aΦ
a
P̄abΦ

b>
H̃
>
b − H̃bΦ

b
P̄baΦ

a>
H̃
>
a , (21)

as well as ra and D̄i’s using (4a), (14), respectively. It obtains r̄a=(Sab)
− 1

2 ra

and then passes the following data to every robot i ∈ V in the network:

update-messagei =
(
D̄i r̄

a
, D̄iD̄

>
i

)
.

Every robot i ∈ V , upon receiving its respective update-messagei, updates its
state estimate and the corresponding covariance

x̂
i+

(k+1) = x̂
i-
(k+1)+Φ

i
(k+1)update-messagei(1), (22a)

P
i+

(k+1) = P
i-
(k+1)−Φ

i
(k+1)update-messagei(2)Φ

i
(k+1)

>
. (22b)

The CCU updates its local variables, for i ∈ V\{N}, j ∈ {i + 1, · · · , N}:

P̄ij(k+1) = P̄
i
ij(k)−D̄iD̄

>
j . (23)

3: k ← k + 1

robots making measurements inform the CCU and indicate
to CCU what their landmark robots are. Therefore, the CCU
knows VM and VL(i)’s, and sorts both of these sets according
to the it’s sequential-updating-order guideline. �

Similar to the decentralized implementation of [8], Algo-
rithm 2 is robust to permanent team member dropouts. The
CCU only suffers from a processing and communicational
cost until it can confirm that the dropout is permanent.

V. ACCOUNTING FOR IN-NETWORK MESSAGE DROPOUTS

In this section, we study the robustness of Algorithm 2
against occasional communication link failures between
robots and the CCU. We show that this operation is still
a minimum variance update when some of the robots miss
to receive the message of the CCU. Here, we assume that
the two robots involved in a relative measurement can both
communicate with the CCU at the same time otherwise, we
discard that measurement. We base our study on analyzing
a fully centralized EKF for CL in which the FC fails to



Algorithm 3 CCU’s sequential updating procedure for multiple
in-network measurement at time k + 1

Require: Initialization (j = 0): The CCU obtains the following information from
robot a ∈ VM and all of its landmarks b ∈ VL(a),

Landmark-messagea =
(
zab, x̂

a-
(k + 1),P

b-
(k + 1),Φ

a
(k + 1)

)
,

Landmark-messageb =
(
x̂
b-

(k + 1),P
b-

(k + 1),Φ
b
(k + 1)

)
.

The CCU initializes the following variables

x̂
+i

(k + 1, 0) = x̂
-i

(k + 1), ∀i ∈ V̄,

P̂
+i

(k + 1, 0) = P
-i

(k + 1), ∀i ∈ V̄,
P̄il(k + 1, 0) = P̄il(k), i ∈ V\{N}, l ∈ {i + 1, · · · , N}.

Iteration j: CCU proceeds with the following calculations.
1: for a ∈ VM do
2: for b ∈ VL(a) do
3: CCU calculates H̃a, H̃b and ra using x̂+a(k+1, j) and x̂+b(k+1, j).

Then, using these measurement matrices and P̂
+a

(k + 1, j), P̂
+b

(k + 1, j)
and P̄ab(k + 1, j), CCU calculates Sab from (13) and subsequently r̄(j) =

(Sab)
− 1

2 ra and D̄i(j) from (14) for i ∈ V . Next, CCU updates the state and
the covariance of all the robots in i ∈ V̄ as follows

x̂
+i

(k+1, j+1) = x̂
+i

(k+1, j) +Φ
i
(k+1) D̄i(j) r̄(j),

P
+i

(k+1, j+1)=P
+i

(k+1, j)−Φ
i
(k+1)D̄i(j)D̄i(j)

>
Φ
i
(k+1)

>
.

It also updates P̄il for i ∈ V\{N}, l ∈ {i + 1, · · · , N} as follows

P̄il(k + 1, j + 1) = P̄
i
ij(k + 1, j)−D̄i(j)D̄l(j)

>
.

4: j ← j + 1
5: end for
6: end for
7: CCU broadcasts the following update messages (s =

∑
i∈VM

|VL(i)|)
• for robot i ∈ V\V̄

update-messagei =
(∑s

j=1
(D̄i(j)r̄(j)),

∑s

j=1
(D̄i(j)D̄i(j)

>
)
)
;

• for robot i ∈ V̄

update-messagei =
(
(Φ

i
)
−1

(x̂
+i

(k + 1, s)− x̂
-i

(k + 1)),

−(Φ
i
)
−1

(P
+i

(k + 1, s)−P
-i

(k + 1))(Φ
i
)
−T )

.

update the estimation of some of the robots. In our partially
decentralized implementation of the algorithm, these robots
are those which miss the update-message of the CCU and as
such they are not updating their estimates.
Let FC in a centralized CL be always able to update the
estimation equation of the robots involved in a relative
measurement. Without loss of generality, assume that the FC
does not use the relative measurement taken by robot a 6= N
from robot b 6= N to update the state estimation of robot N .
The propagation stage of the Kalman filter is independent
of the observation process and thus stays the same as the
classical EKF for CL as in (7). Then, the state estimation
update equations of this centralized CL algorithm are

x̂+
1:N−1(k+1) =x̂-

1:N−1(k+1) + K̄(k+1)ra(k+1), (24)

x̂N+(k+1) =x̂N-(k+1), (25)

where x̂+
1:N−1 = (x̂1+, · · · , x̂N−1+). Accordingly, let the

covariance matrix of the entire network be partitioned as

P =

[
P1:N−1 P1:N−1,N

P>1:N−1,N PN

]
.

Then, the CL update gain K̄ is found by ∂P1:N−1/∂K̄ = 0,
which, for i ∈ V\{N}, results in

K̄i = (P-
ib(k + 1)H̃

>
b −P-

ia(k + 1)H̃
>
a )Sab

−1,

where K̄i is the component of K̄ that is used to obtain x̂i+.
This development is similar to the approach used to obtain

minimum variance reduced order estimators (cf. e.g., [15,
Chapter 8, Page 25]). Using this gain we obtain the following
propagation equation for the covariance of robots i ∈ V\{N}
and robot N , respectively,

Pi+(k+1) =Pi-(k+1)−K̄iSab(k+1)K̄i(k+1)>, (26a)

PN+(k+1) =PN-(k+1). (26b)

For cross-covariances we obtain, for i ∈ V and j ∈ V\{i}

P+
ij(k+1) =P-

ij(k+1)−K̄i(k+1)Sab(k+1)K̄j(k+1)>. (27)

Here, we defined and used the pseudo gain K̄N = (P-
Nb(k+

1)H̃
>
b −P-

Na(k + 1)H̃
>
a )Sab

−1.
Comparing the developments above with the centralized CL
where all the agents’ states are updated, we observe that
the state and the associated covariance update of robots i ∈
V\{N} and also the cross-covariance update terms using the
pseudo gain K̄N are the same. As such, the decomposition
technique used to develop the partially decentralized algo-
rithm of Section IV is valid here. Thus, we can implement
exactly Algorithm 2 as is while the robots missing the
update message of the CCU do not update their estimations.
Therefore, this algorithm is robust to message dropouts and
the estimations of the robots receiving the update message,
as stated above, are minimum variance.
Interestingly, the fully decentralized algorithm of [8] is
not robust to in-network message dropouts. This is due
to inconsistency in the local copy of P̄ij’s of the robots
receiving the update message and those that do not.

VI. COMPARATIVE PERFORMANCE EVALUATIONS IN
SIMULATIONS

We compare the performance of the proposed partially D-
CL algorithm with and without occasional communication
failure in simulations. We use a team of five robots moving
on a flat terrain of 25m×25m area with constant linear velocity
of 0.25 m/s and the rotational velocity drawn uniformly
randomly from [0.1, 0.4] rad/s. The standard deviation of the
linear (resp. rotational) velocity measurement noise of each
robot is assume to be 5% of the linear (resp. 20% of the
rotational) velocity of that robot. We assume that some robots
can obtain absolute position measurement from time to time;
zi = [xi, yi]>+νi

z with σzx = σzy = 0.1 m. We use relative
pose measurement whose contaminating noise is zero mean
Gaussian with σzx = σzy = 0.1 m and σzφ = 2 degree, for
all robots. In our test, we compare the root mean square
(RMS) position and orientation error of M=30 Monte Carlo
simulations, with the same relative measurement scenarios.
Let ei(k) = xi − x̂i(k+), i ∈ {1, · · · , 5}. Then, we calculate
RMS using RMSi(k) =

√
1
M

∑M
j=1 ei

j(k)>ei
j(k). Figure 1

shows the results for the measurement and communication
scenarios explained in Table I.

VII. CONCLUSIONS

For a team of robots with limited computational, storage
and communication resources, we proposed a partially D-CL
algorithm. This localization strategy is an implementation
of an EKF for CL problem where the propagation stage



TABLE I – Time table for exteroceptive measurement times and the disconnected robots. a → b indicates that robot a takes relative
measurement from robot b. a→ a indicates that robot a has obtained absolute measurement.

Time (sec.) [0 50] (50 52] (52 60] (60 70] (70 72] (72 80] (80 100] (100 102] (102 110] (110 300]

Measurements

1→ 2
2→ 3
3→ 4
4→ 5

1→ 2
3→ 3

1→ 2
3→ 3

1→ 2
2→ 3
3→ 4
4→ 5

1→ 2
2→ 3
3→ 3
4→ 5

1→ 2
2→ 3
3→ 3
4→ 5

1→ 2
2→ 3
3→ 4
4→ 5

1→ 2
2→ 2
3→ 4
4→ 5

1→ 2
2→ 2
3→ 4
4→ 5

1→ 2
2→ 3
3→ 4
4→ 5

Robot(s) disconnected
from CCU, case 1 none 4, 5 none none 5 none none 4 none none

Robot(s) disconnected
from CCU, case 2 none 4, 5 4, 5 none 5 5 none 4 4 none
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Fig. 1 – Simulation results for position RMS error for the
measurement and communication scenarios described in Table I (the
orientation RMS error behaves similarly and omitted for brevity).
In plots (a)-(e), solid line shows the case of no communication
failure; dashed (resp. dash-doted) line shows case 1 (resp. case 2)
communication link failure scenario of Table I. As the simulations
show the performance is very close despite occasional commu-
nication failure between robot 4 and 5 with CCU. As expected,
performance deteriorates more if the link failure duration is longer.
Plot (f) shows the simulation results when no CL is applied. As
expected, the estimation error is much larger in this case.

is fully decentralized by decomposing the coupling terms
and the updates are carried out in a CCU. In terms of the
team size, this algorithm only requires O(1) storage and
computational cost per robot and the main computational
burden of implementing the EKF for CL is carried out by
the CCU. Moreover, this partially D-CL algorithm is robust
to communication link failures between some robots and the
CCU and the estimation update for robots that are receiving
the CCU’s update message is minimum variance. Here, we
discarded the measurement of the robots that fail to com-

municate with the CCU. Our future work involves utilizing
these old measurements using out-of-sequence-measurement
update strategies [16] when the communication link is re-
stored between the corresponding robot and the CCU.
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