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Abstract

This paper considers the static average consensus problem

for a multi-agent system and proposes a distributed algo-

rithm that enables individual agents to set their own rate of

convergence. The algorithm has a two-time scale structure

and is constructed using a singular perturbation approach.

A fast information processing state uses a Laplacian consen-

sus strategy to calculate the agreement value in a distributed

manner. The slow-time dynamic part, termed motion phase,

allows each agent to move towards the agreement point at

its own desired speed. We provide a complete analysis of

the proposed consensus algorithm. This covers the rate of

convergence of individual agents, effects of communication

delays, robustness to changes in the network topology, im-

plementation in discrete time, and performance guarantees

under limited control authority. Our analysis is based on

tools from matrix theory, algebraic graph theory and stabil-

ity analysis. Numerical examples illustrate the benefits of

the proposed algorithm.

1 Introduction

This paper deals with the static average consensus prob-
lem for a network of agents. Given a set of static input
signals, one per agent, this problem consists of design-
ing distributed strategies that allow agents to obtain
the average of the inputs using only their own informa-
tion and communication with neighboring agents. In re-
cent years, the average consensus problem of networked
systems has attracted widespread attention due to its
broad usage in a variety of applications. Examples are
numerous and we only refer here to multi-vehicle coor-
dination [13], distributed fusion in sensor networks [9],
and wireless smart meters where all agents should agree
on the network average power demand or consump-
tion [2].

One approach to solve the static average consensus
problem is based on reaching agreement regarding the
states of N agents with an integrator dynamics of the
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form ẋi(t) = vi(t), i ∈ {1, . . . , N}, where vi(t) is
set to be the weighted sum of the difference between
the states of the out-neighbors of an agent and its
own state. According to [10], if the network topology
satisfies certain conditions, this dynamics converges,
with exponential rate, to the average of the initial
conditions. The static average consensus thus can be
achieved if each agent initializes its dynamics with its
static input. Throughout this note, we refer to this
algorithm as the Laplacian consensus algorithm.

The simple structure of the Laplacian consensus algo-
rithm is very appealing. The literature is by now vast
and populated with works that explore a wide variety
of aspects of the algorithm, both in continuous and dis-
crete time, see [12, 5, 1] and references therein. Here
we only include a few references which are most closely
connected to the issues considered in the paper. Sev-
eral works consider switching topologies and time de-
lays, see e.g., [3, 10, 6, 11, 7]. Increasing the rate of
convergence of the Laplacian consensus algorithm us-
ing optimal weight design and rewiring of the links of
a network to create a so-called small world network are
proposed in [15] and [8], respectively. These studies
focus on the analysis of the stability and asymptotic
convergence properties of the algorithm. In contrast,
in this paper, we concentrate on the transient behavior.
We make the following observations about the Laplacian
consensus algorithm:

• There is no control over the transient behavior of
the agents’ dynamics. The collective behavior of
the agents is governed by the network topology. If
the communication topology changes, the transient
behavior changes as well;

• The least rate of convergence of the algorithm for
all agents is the same. Agents have no control over
their own rate of convergence. To accommodate
agents with limited control authority, the entire
dynamics has to be slowed down;

• Any perturbation in the consensus command (e.g.,
saturation of vi(t) at any agent), corrupts the
mission of the entire network, i.e., no agent reaches
the intended average value.



This paper addresses the aforementioned ‘weaknesses’
with an algorithm that is only slightly more complex
than the Laplacian consensus algorithm. Our work is
motivated by applications where the agreement state
corresponds to some physical variable such as position.
In such scenarios, agents might have limited control au-
thority. At the same time, robustness to the satura-
tion of control commands, consistent response under dif-
ferent communication topologies, and control over the
transient response are highly desirable properties.

The proposed algorithm builds on the observation that
the group of agents can use the Laplacian consensus
algorithm to quickly obtain the desired average value.
Once the desired average value is obtained, the agents
can move towards the agreement point at their own de-
sired rate. We call the first stage of this procedure as
the information processing phase and the correspond-
ing states as the information states. We call the second
phase as the motion phase and its states as the agree-
ment states. The innovation here is to combine the
information processing and the motion phase in one dy-
namics using singularly perturbed systems, allowing us
to eliminate the waiting stage for the information state
to converge.

We provide a complete analysis of the proposed consen-
sus algorithm, including the study of the rate of conver-
gence for individual agents, the effect of communication
delays, the robustness against changes in the network
topology, and the implementation in discrete time. We
also study the performance of the proposed algorithm
under saturation in the agreement state equation. Our
analysis combines matrix theory, algebraic graph the-
ory, and stability analysis.

2 Preliminaries

This section gathers basic preliminaries on notation and
graph theory and terminology.

2.1 Notation. The vector 1n represents an n-
dimensional vector with all elements equal to one, and
In represents the identity matrix with dimension n×n.
We denote by A⊤ the transpose of matrix A. For a
square matrix A we define Sym(A) = 1

2 (A+A⊤). We
use Diag(A1, · · · ,AN ) to represent the block-diagonal
matrix constructed from matrices A1, . . . ,AN . The ith

row of a matrix A is indicated by [A]i. For a vector u,
we use ‖u‖ to denote the standard Euclidean norm, i.e.,

‖u‖ =
√
u⊤u.

A continuous function f : [0, a) → [0,∞) is said to
belong to class K if it is strictly increasing and f(0) = 0.
We let δ1(ǫ) ∈ O(δ2(ǫ)) to denote the fact that there

exist positive constants c and k such that

|δ1(ǫ)| ≤ k|δ2(ǫ)|, ∀ |ǫ| < c.

In network related variables, the local variables at each
agent are distinguished by a superscript i, e.g., ui is
the local static input of agent i. If pi ∈ R is a local
variable at agent i, the aggregated pi’s are represented
by p = (p1, . . . , pN ) ∈ R

N .

2.2 Graph Theory. Here, we briefly review some
basic concepts from graph theory and linear algebra,
see e.g. [1]. A directed graph, or simply a digraph, is a
pair G = (V , E), where V = {1, . . . , N} is the node set
and E ⊆ V ×V is the edge set. We make the convention
that an edge from i to j, denoted by (i, j), models the
fact that agent j can send information to i. For an
edge (i, j) ∈ E , i is called an in-neighbor of j and j
is called an out-neighbor of i. A directed path is an
ordered sequence of vertices such that any ordered pair
of vertices appearing consecutively is an edge of the
digraph. A digraph is called strongly connected if for
every pair of vertices there is a directed path between
them.

A weighted digraph is a triplet G = (V , E ,A), where
(V , E) is a digraph and A ∈ R

N×N is a weighted
adjacency matrix with the property that aij > 0 if
(i, j) ∈ E and aij = 0, otherwise. A weighted digraph is
undirected if aij = aji for all i, j ∈ V . The weighted
out-degree and weighted in-degree of a node i, are
respectively, din(i) =

∑N

j=1 aji and dout(i) =
∑N

j=1 aij .

We let doutmax = max
i∈{1,...,N}

dout(i) denote the maximum

weighted out-degree. A digraph is weight-balanced if at
each node i ∈ V , the weighted out-degree and weighted
in-degree coincide (although they might be different
across different nodes).

The out-degree matrix Dout is the diagonal matrix
whose Dout

ii = dout(i), for i ∈ V . The (out-) Laplacian
matrix is L=Dout−A. Based on the structure of L,
at least one of the eigenvalues of L is zero and the rest
of them have nonnegative real parts. Also, L1N = 0.
For an undirected graph, L is a symmetric positive
semidefinite matrix. For a strongly connected digraph,
zero is a simple eigenvalue of L. A weighted digraph G
is weight-balanced if and only if 1T

NL = 0. We denote
the eigenvalues of the Laplacian matrix by λi, i ∈ V ,
where λ1 = 0 and ℜ(λi) ≤ ℜ(λj), for i < j. We denote

the eigenvalues of Sym(L) by λ̂i, i ∈ V . For a strongly
connected and weight-balanced digraph, zero is a simple
eigenvalue of Sym(L). For such a digraph, we order the

eigenvalues of Sym(L) as λ̂1 = 0 < λ̂2 ≤ λ̂3 ≤ · · · ≤ λ̂N .



3 Problem Definition

Consider a network of N agents with single-integrator
dynamics given by

(3.1) ẋi = vi, i ∈ {1, . . . , N},
where xi ∈ R is the agreement state and vi ∈ R is the
driving command of agent i. The network interaction
topology is modeled by a weighted digraph G. Each
agent i ∈ {1, . . . , N} has a static input ui ∈ R. When
G is a strongly connected and weight-balanced digraph,
[10] showed that the first-order integrator system (3.1)
with
(3.2)

vi = −
N
∑

j=1

aij (x
i − xj), xi(0) = ui, i ∈ {1, . . . , N},

satisfies the following:

• It converges exponentially to the average of
initial conditions of the agents, i.e., x(t) →
( 1
N

∑N

j=1 u
j)1N as t → ∞;

• The least rate of convergence of all agents are the
same and it is governed by the smallest non-zero
eigenvalue of Sym(L), i.e., λ̂2;

• For time-varying networks that remain strongly
connected and weight-balanced, it converges ex-
ponentially fast to the agreement ( 1

N

∑N

j=1 u
j)1N

with the least rate of the minimum of λ̂2 of all the
graph topologies;

• The discrete version of the algorithm with stepsize
δ, i.e., x(k + 1) = x(k) − δLx(k), converges to

the agreement value ( 1
N

∑N
j=1 u

j)1N , as long as

δ ∈ (0, doutmax);

• For networks with undirected and connected graph
topologies where the communication time delay τ
is the same across all links, if τ ∈ (0, π/2λN) or
the Nyquist plot of Φ(s) = e−τs/s has a zero
encirclement around −λi

−1 , for i ∈ {2, . . . , N},
then x(t) → ( 1

N

∑N

j=1 u
j)1N asymptotically as

t → ∞.

The algorithm (3.2) is a static average consensus al-
gorithm, which we refer to as Laplacian consensus al-
gorithm. As our brief overview above shows, this al-
gorithm only addresses the collective behavior of the
agents and is designed under the assumption of unlim-
ited control authority. In this paper, motivated by the
applications where (3.1) is a model of a physical pro-
cess, we solve the following two problems. The first
problem below states the desire of agents to converge to
the agreement value with their own rate of convergence.

PROBLEM 1. Let G be a strongly connected and
weight-balanced digraph. Design a distributed average
consensus algorithm such that, for each i ∈ {1, . . . , N},
the agreement state xi arrives at 1

N

∑N
j=1 u

j with its

own desired rate of convergence βi.

The next problem addresses the static average consen-
sus problem for systems with limited control authority.

PROBLEM 2. Let G be a strongly connected and
weight-balanced digraph. Assume the driving command
of every agent i ∈ {1, . . . , N} is limited by some value
v̄i ∈ R, i.e., |vi(t)| < v̄i for all t ≥ 0. Design a
distributed average consensus algorithm such that the
agreement state xi arrives at 1

N

∑N
j=1 u

j.

4 Static Average Consensus Algorithm with

Controllable Rates of Convergence

In this section, we solve Problem 1. The simplest dy-
namics that generates xi → 1

N

∑N

j=1 u
j, exponentially

with rate βi > 0 for each agent i, is

ẋi = −βi(xi − 1

N

N
∑

j=1

uj).

To decentralize this dynamics, each agent needs a
mechanism that generates the average of the inputs in a
distributed manner. Once the agents know the average,
they can move towards this point with their desired rate
βi. This procedure can be realized as follows:

• Information processing phase: wait for

ż = −Lz, zi(0) = ui,

to converge to its equilibrium z̄i = 1
N

∑N

j=1 u
j ;

• Motion phase: use the resulting z̄i in

ẋi = −βi(xi − z̄i), xi(0) ∈ R.

The problem with this setup is that, it takes infinite
time for zi(t) to converge to its exact equilibrium point.
The aforementioned procedure can be interpreted as a
two-time scales operation, a fast dynamics to generate
the average and a slow dynamics to move towards the
input average with the desired rate. Note that both the
fast and slow dynamics are linear and exponentially sta-
ble. The framework of singularly perturbed dynamical
systems offers the possibility of combining the slow and
fast dynamics to avoid the wait for the fast dynamics to
converge.



Consider therefore the dynamics

ǫ żi = −
N
∑

j=1

aij (z
i − zj), zi(0) = ui ∈ R,(4.3a)

ẋi = −βi(xi − zi), xi(0) ∈ R,(4.3b)

According to the singular perturbation theorem on
infinite intervals, cf. [4, Theorem 11.2], there is an ǫ⋆ > 0
such that for any 0 < ǫ ≤ ǫ⋆, the solution for each
i ∈ {1, . . . , N} of the above dynamics converges to a
O(ǫ)-neighborhood of the solution of the slow dynamics,

i.e., |xi(t) − 1
N

∑N

j=1 u
j|, |zi(t) − 1

N

∑N

j=1 u
j| < O(ǫ)

as t → ∞. In the following, we show that, in fact,
convergence is exact and exponential for any ǫ > 0 and
βi > 0, i ∈ {1, . . . , N}.

Theorem 4.1. Let G be strongly connected and weight-
balanced digraph. Following the algorithm (4.3), for
any ǫ > 0 and βi > 0, i ∈ {1, . . . , N}, we have

xi(t), zi(t) → 1
N

∑N

j=1 u
j as t → ∞, exponentially.

Proof. We can rewrite (4.3) in the following compact
form:

(4.4)

[

ż

ẋ

]

=

[

−ǫ−1L 0

B −B

] [

z

x

]

= L̃

[

z

x

]

.

Here, B ∈ R
N×N is the diagonal matrix whose diagonal

element Bii is equal to βi. The eigenvalues of L̃ are
equal to the eigenvalues of −ǫ−1L and −B. i.e.,

(4.5) 0,−ǫ−1λ2, . . . ,−ǫ−1λN ,−β1, . . . ,−βN .

For a strongly connected and weight-balanced digraph,
L̃ has a simple zero eigenvalue and the rest of the
eigenvalues have negative real parts, provided ǫ > 0 and
βi > 0. Therefore, (4.4) is a stable linear system. Note
that L̃12N = 0, therefore, 12N is the right eigenvector
of L̃ corresponding to its zero eigenvalue. As zero is the
simple eigenvalue of L̃, with corresponding eigenvector
12N , then the equilibrium of (4.4) is α12N where α ∈ R.
For a weight-balanced network topology, multiplying
the collective z state equation from left by 1⊤, we obtain
∑N

j=1 ż
j = 0. Consequently,

∑N
j=1 z

j =
∑N

j=1 z
j(0) =

∑N
j=1 u

j , for t ≥ 0. Additionally, at t → ∞, we have

Nα =
∑N

j=1 u
j. As a result, α = 1

N

∑N
j=1 u

j . This
completes the proof. �

Next, we show under what conditions on ǫ, we can solve
Problem 1.

Lemma 4.1. Let G be strongly connected and weight-
balanced digraph. For given ǫ > 0 and βi > 0 such
that βi 6= ǫ−1λ̂2, the worst rate of convergence of the
agreement state xi, i ∈ {1, . . . , N}, following algorithm

(4.3) is min{βi, ǫ−1λ̂2}.

Proof. We write the algorithm (4.3) in the following
equivalent form:

ż = −ǫ−1Lz, zi(0) = ui ∈ R,(4.6a)

ẋi = −βi(xi − [IN ]iz), xi(0) ∈ R.(4.6b)

We can look at z as a dynamical input to (4.6b). There-
fore, for a given initial condition xi(0), the solution of
(4.6b) is

(4.7) xi(t) = xi(0)e−βit + βi

∫ t

0

e−βi(t−τ)[IN ]iz(τ)dτ.

We can write this solution as

xi(t)− 1

N

N
∑

j=1

uj = (xi(0)− 1

N

N
∑

j=1

uj)e−βit+

βi

∫ t

0

e−βi(t−τ)[IN ]i(z(τ) −
1

N

N
∑

j=1

uj1N )dτ.

We define κx = |xi(0) − 1
N

∑N
j=1 u

j|. Using [10,

Theorem 8] for strongly connected and weight-balanced
digraphs, we have the following convergence bound for
(4.6a):

(4.8) ‖z(t)− 1

N

N
∑

j=1

uj1N‖ ≤ κz e
−ǫ−1λ̂2t,

where κz = ‖z(0) − 1
N

∑N

j=1 u
j1N‖. Recall that λ̂2 is

the smallest non-zero eigenvalue of Sym(L). Thus,

|xi(t)− 1

N

N
∑

j=1

uj |≤κxe
−βit+βiκze

−βit

∫ t

0

e−(ǫ−1λ̂2−β
i)τdτ.

• For βi = ǫ−1λ̂2:

|xi(t)− 1

N

N
∑

j=1

uj | ≤ κxe
−βit + t βiκze

−βit;

• For βi 6= ǫ−1λ̂2:

|xi(t)− 1

N

N
∑

j=1

uj | ≤ κxe
−βit+

βiκz

βi − ǫ−1λ̂2

(e−ǫ−1λ̂2t − e−βit).

Hence, for βi 6= ǫ−1λ̂2, as t → ∞, xi(t) goes to
1
N

∑N
j=1 u

j, with an exponential rate of min{βi, ǫ−1λ̂2}.
�

COROLLARY 4.1. A solution to Problem 1 is to
follow algorithm (4.3) with ǫ > 0 satisfying the following
condition

(4.9) ǫ < β̄−1λ̂2, β̄ = max{β1, . . . , βN}.



4.1 Dynamically Changing Interaction Topolo-

gies. Here, we study the convergence of the algo-
rithm (4.3) over time-varying interaction topologies. We
consider strongly connected and weight-balanced di-
graphs (V , E) whose adjacency matrices have nonzero
entries that are both uniformly lower and upper
bounded, i.e, A ∈ SA(E) = {A| 0 < a ≤ aij ≤
ā if (i, j) ∈ E otherwise aij = 0}. We represent the set
of all such weighted digraphs by

Γ = {G = (V , E ,A) | A∈SA(E),1⊤
NL(G)=0,

L(G)1N =0, rank(L(G)) = N − 1}.(4.10)

Notice that the index set associated with the elements
of Γ, represented by IΓ, can have infinite cardinality.
The consensus algorithm (4.3) on a network whose
topology at each time belongs to Γ becomes a linear
switching system below characterized by the switching
signal σ : R → IΓ

ǫ ż = −ǫ−1L(Gσ(t)), z(0) = u ∈ R
N ,(4.11a)

ẋ = −B(x− z), x(0) ∈ R
N ,(4.11b)

where at each time Gσ(t) ∈ Γ. Recall B ∈ R
N×N is the

diagonal matrix whose diagonal element Bii is equal to
βi. The following result studies its convergence.

Lemma 4.2. Let Gσ ∈ Γ, where Γ is given in (4.10)
and σ : R → IΓ is any arbitrary switching signal.
Then, for any ǫ > 0 and βi > 0 such that βi 6=
ǫ−1min

Gk∈Γ
{λ̂2(L(Gk))}, both xi(t) and zi(t) in (4.11) con-

verge exponentially fast to 1
N

∑N

j=1 z
j(0) = 1

N

∑N

j=1 u
j,

as t → ∞, i ∈ {1, . . . , N}. Furthermore, the least rate

of convergence for xi is min{βi, ǫ−1min
Gk∈Γ

{λ̂2(L(Gk)}},
i ∈ {1, . . . , N}.

Proof. Given the conditions in the statement of this
lemma, using the results on the Laplacian consensus
algorithm, for ǫ > 0, we have zi(t) → 1

N

∑N
j=1 u

j , ex-

ponentially fast, as t → ∞, i ∈ {1, . . . , N}, with a

least rate of convergence of ǫ−1min
Gk∈Γ

{λ̂2(L(Gk)}. Us-

ing the similar treatment in the proof of Lemma
4.1 (substitute min

Gk∈Γ
(λ̂2(L(Gk)) for λ̂2 in (4.8)), we

can show that xi(t) → 1
N

∑N

j=1 u
j exponentially fast

as t → ∞ with a worst rate of convergence of
min{βi, ǫ−1min

Gk∈Γ
{λ̂2(L(Gk))}}, i ∈ {1, . . . , N}. �

4.2 Time Delay. In this section, we assume that the
network topology is an undirected and connected static
graph. We assume that the information state of node i,
i.e. zi, passes through a communication channel (i, j)

with a time-delay τij > 0 before getting to node j. The
average consensus algorithm (4.3) in this case is

ǫ żi(t)=−
N
∑

j=1

aij (z
i(t− τij)−zj(t− τji)),(4.12a)

ẋi(t) = −βi(xi(t)− zi(t)),(4.12b)

where the initial conditions are zi(0) = ui ∈ R and
xi(0) ∈ R, i ∈ {1, . . . , N}. Here, we focus on the
simplest possible case where the time-delays in all
channels are equal to τ > 0. Our main result is as
follows:

Lemma 4.3. Consider the algorithm (4.12) with equal
communication time-delay τ > 0 in all links. Assume
the network topology is a static, undirected, and con-
nected graph. Then, for any ǫ > 0 and βi > 0, (4.12)
globally asymptotically converges to the consensus value
1
N

∑N

j=1 u
j for both information and agreement states

zi and xi, i ∈ {1, . . . , N}, if and only if either of the
following equivalent conditions are satisfied:

(i) τ ∈ (0, ǫπ/2λN);

(ii) The Nyquist plot of Φ(s) = e−τs/s has a zero
encirclement around −ǫλi

−1 , for i ∈ {2, . . . , N}.

Proof. Consider the following change of variables:

(4.13) pi = βi(xi − zi), i ∈ {1, . . . , N}.

Then, we can write (4.12b) in the equivalent form of

(4.14) ṗi = −βipi − βiżi, i ∈ {1, . . . , N},

a dynamical system with input żi(t). For βi > 0,
the unforced system (when żi(t) ≡ 0) of (4.14) is
exponentially stable, with equilibrium at pi = 0. Note
that (4.14) is globally Lipschitz in (pi, żi). Invoking
Lemma 4.6 of [4], then (4.14) is globally ISS, i ∈
{1, . . . , N}. Consider (4.12a); given the conditions (i)
and (ii) in the lemma, using the results on the Laplacian
consensus algorithm, for ǫ > 0, we have zi(t) →
1
N

∑N

j=1 u
j asymptotically, as t → ∞, i ∈ {1, . . . , N}.

As a result, żi(t) goes to zero as t → ∞, i ∈ {1, . . . , N}.
For ISS systems when the input signal converges to zero
as t → ∞, so does the states of the system. Therefore,
pi(t) → 0 as t → ∞ in (4.14), i.e., xi(t) → zi(t) as
t → ∞. As a result, in (4.12), xi(t) and zi(t) both

asymptotically tend to 1
N

∑N

j=1 z
j(0) = 1

N

∑N

j=1 u
j as

t → ∞. �



4.3 Discrete-time Implementation. An iterative
form of (4.3), using first-order Euler discretization, can
be stated as follows:

zi(k+1)=zi(k)−δǫ−1
N
∑

j=1

aij (z
i(k)−zj(k)),(4.15a)

xi(k+1)=xi(k)−δ(βi(xi(k)− zi(k))),(4.15b)

where δ > 0 is the stepsize. The following result, studies
the convergence of this algorithm and characterizes the
range of admissible stepsizes.

Lemma 4.4. Let G be strongly connected and weight-
balanced digraph topology. For a given ǫ > 0 and βi > 0,
i ∈ {1, . . . , N}, for any xi(0) ∈ R and zi(0) = ui ∈ R,

following (4.15) with a δ ∈ (0,min{ǫdoutmax

−1
, β̄−1}),

where β̄ = max{β1, · · · , βN}, we have xi(k) →
1
N

∑N

j=1 u
j and zi(k) → 1

N

∑N

j=1 u
j asymptotically as

k → ∞, for i ∈ {1, . . . , N}.

Proof. The collective form of (4.15) can be written as

[

z(k + 1)
x(k + 1)

]

=

[

IN−ǫ−1δL 0

δB IN−δB

][

z(k)
x(k)

]

=P δ

[

z(k)
x(k)

]

.

For 0 < δ < ǫdoutmax
−1, using the Gersgorin disk theorem

(see, e.g., [1]), we can show the eigenvalues of IN −
ǫ−1δL are inside the unit circle in the complex plane.
For a strongly connected digraph this matrix has a
simple eigenvalue at 1. Because B > 0, for 0 <
δ < β̄−1, the eigenvalues of IN − δB are all located
strictly inside the unit circle. As a result, for δ ∈
(0,min{ǫdinmax

−1, β̄−1}), P δ has an eigenvalue equal to
1 and the rest of the eigenvalues are located inside the
unit circle. Therefore, P δ is a semi-convergent matrix,
i.e., limk→∞ P k

δ = P̄ where P̄ is a constant matrix.
Therefore,

lim
k→∞

([

z(k + 1)
x(k + 1)

]

−
[

z(k)
x(k)

])

= lim
k→∞

(

δL̃

[

z(k)
x(k)

])

= 0,

where L̃ is defined in (4.4). Recall that the nullspace of
L̃ is spanned by 12N , therefore,

(4.16) lim
k→∞

([

z(k)
x(k)

])

= α12N , α ∈ R.

For a weight-balanced network topology, multiplying
the collective z state equation from left by 1⊤, we
obtain

∑N

j=1 z
j(k + 1) =

∑N

i=1 z
j(k). Consequently,

∑N

j=1 z
j(k) =

∑N

j=1 z
j(0) =

∑N

j=1 u
j, for all k. Invok-

ing (4.16), then at k = ∞ we have Nα =
∑N

j=1 u
j . As

a result, α = 1
N

∑N

j=1 u
j. This completes the proof. �

REMARK 4.1. According to Corollary 4.1, when the
desired rate of convergence βi of any agent i is greater
than λ̂2, then we are forced to use ǫ < β̄−1λ̂2 < 1 to
accommodate it. Compared to the Laplacian consensus
algorithm, this results in a smaller stepsize in the
corresponding discrete-time implementation. However,
if the desired rates of convergence of the agents are
smaller than λ̂2, one can use an ǫ > 1, and use a larger
stepsize in the discrete-time implementation.

5 Consensus in the Presence of Saturation

In this section, we show that the static average consen-
sus algorithm (4.3) also solves Problem 2. We start by
studying the stability of the consensus algorithm (4.3)
if the driving command is saturated. In this case the
consensus algorithm is:

ǫ żi = −
N
∑

j=1

aij (z
i − zj), zi = ui ∈ R,(5.17a)

ẋi = − sati(βi(xi − zi)), xi ∈ R,(5.17b)

where for p ∈ R and a given bound v̄i > 0 at agent i:

sati(p) =

{

p |p| ≤ v̄i,

sign(p)v̄i |p| > v̄i.

Lemma 5.1. Let G be strongly connected and weight-
balanced digraph topology. Starting from any initial
conditions, for any ǫ > 0 and βi > 0, the algorithm
(5.17) makes xi(t) and zi(t) converge to 1

N

∑N

j=1 u
j as

t → ∞.

Proof. Consider the following change of variables:

pi = βi(xi − 1

N

N
∑

j=1

uj), qi = −βi(zi − 1

N

N
∑

j=1

uj).

Then, we can write (5.17b) in the following equivalent
form:

(5.18) ṗi = −βi sati(pi + qi), i ∈ {1, . . . , N}.

Following the approach in [14] and using the ISS Lya-
punov function

V i =
1

3βiv̄i
(|pi|)3 + 1

2βi
(pi)2, i ∈ {1, . . . , N},

one can show that (5.18) is globally ISS. Using the re-
sults on the Laplacian consensus algorithm for strongly
connected and weight-balanced digraphs, in (5.17a), for

ǫ > 0, zi(t) tends to 1
N

∑N

j=1 z
j(0) = 1

N

∑N

j=1 u
j as

t → ∞. As a result qi in (5.18) is a bounded and van-
ishing input signal. For ISS systems when the input
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Figure 1: Network topologies

signal converges to zero as t → ∞, so do the states of
the system. Therefore, in (5.18), pi(t) → 0 as t → ∞
i.e., xi(t) → 1

N

∑N

j=1 u
j as t → ∞. As a result, in

the algorithm (5.17), xi(t) and zi(t) both converge to
1
N

∑N

j=1 z
j(0) = 1

N

∑N

j=1 u
j as t → ∞. �

Lemma 5.1 can be extended to deal with the case
of networks with dynamic interaction topologies as
discussed in Section 4.1 and the case of time delays as
discussed in in Section 4.2.
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Figure 2: Simulation results using the Laplacian con-
sensus algorithm.

6 Numerical Example

Consider the networked system with three
possible communication topologies depicted
in Fig. 1. The inputs in the agents are

u =
[

9.8 7.5 3 −4 9 −8 −3 −7 8.4 5.7
]⊤

.
Agents use edge weights 0 and 1. For the average
consensus task at hand, the network can run on a
static topology, selected from one of the topologies in
Fig. 1, or can switch among them. The digraphs are
all strongly connected and weight-balanced. The λ̂2 of

each of the digraphs shown in Fig. 1 are as follows: for
Fig. 1(a) (λ̂2)a = 0.627, for Fig. 1(b) (λ̂2)b = 0.4258

and for Fig. 1(c) (λ̂2)c = 0.1910.

Figure 2(a)-(c) shows the results of simulations when
the Laplacian consensus algorithm (with driving com-
mand is given by (3.2)) is run over each of the networks
shown in Fig. 1(a)-(c) (static case). Figure 2(d) shows
the simulation results when this algorithm is run over
a dynamic network with switching scenario as follows:
for t < 1 the communication topology is the one de-
picted in Fig. 1(c); for 1 ≤ t < 5, it is Fig. 1(b); for
t > 5 it is Fig. 1(a). In the plots, the solid horizontal
line is the average and the agreement states are rep-
resented by dashed lines. These plots show that the
Laplacian consensus algorithm converges to the average
of the inputs for both static and dynamic communi-
cation topologies. However, the transient response is
different for each communication topology.

Figure 3 shows the simulation results for the static
and dynamic topology cases explained above using
the average consensus algorithm (4.3) when B =
Diag(0.2, 0.3., . . . , 1.1) and ǫ = 0.1. We use the same
initial conditions for the xi(0)’s in all four scenarios
considered – these are generated randomly in [−20, 20]–
and we depict the simulation results in one plot. Be-
cause max{β1, · · · , βN} < ǫ−1min{(λ̂2)a, (λ̂2)b, (λ̂2)c},
according to results of Corollary 4.1 and Lemma 4.2,
the dominant rate of convergence at each agent i, for
all four communication topologies, is set by βi of that
agent. Therefore, as shown in Fig. 3, the agreement
states of each agent for all four scenarios considered
have almost the same transient behavior and as ex-
pected xi(t) → 1

N

∑N

j=1 z
j(0) = 1

N

∑N

j=1 u
j as t → ∞

with an exponential rate of βi, ∀i ∈ {1, . . . , N}.
Next, we evaluate the performance of the algorithms
when the driving command vi is bounded, i.e., ẋi =
− sati(vi(t)). The saturation bound is set to 1 for
all the agents. We use ǫ = 1 and βi = 1 in our
proposed consensus algorithm and initial conditions for
the xi(0)’s are generated randomly in [−20, 20]. The
simulation results are shown in Fig. 4. As this figure
shows, our algorithm (Fig. 4(b)) converges to the right
agreement value despite the saturation, as guaranteed
by Lemma 5.1. However, this is not the case for the
Laplacian consensus algorithm (Fig. 4(a)).

7 Conclusions

We have proposed a consensus algorithm that enables
individual agents to agree on the average of their static
signals and set their own rate of convergence. The
proposed algorithm builds on the theory of singular
perturbed systems and is robust to switching topologies,
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Figure 3: Simulation results using the average consensus
algorithm (4.3).
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Figure 4: Simulation results when the driving command
saturates.

communication time delays, and saturation. We have
also studied the discrete-time implementation of the
algorithm and derived bounds on the stepsize that
guarantee asymptotic convergence. Future work will
explore the extension of the results to dynamic signals.
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