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Abstract— This paper proposes two continuous-time dynamic algorithm is generalized in [9] to achieve zero-error dyiam
average consensus algorithms for networks with strongly @ average consensus of special class of time-varying inputs

nected and weight-balanced interaction topologies. The BF  \ith rational Laplace transforms and no poles in the left
posed algorithms, termed1st-Order-Input Dynamic Consensus

(FOI-DC)) and 2nd-Order-Input Dynamic Consensus SOI-DC), complex half-plape. Thg aforementioned algorithms.are all
respectively, allow agents to track the average of their dyamic ~ designed in continuous time. The work [10] develops instead
inputs within an O(e)-neighborhood with a pre-specified rate. a discrete-time dynamic average consensus estimator that,
Thet.only reguirer&wegtdon. thtf? set of ffferencedinpléts i? fﬂl:%/ilng with a proper initialization, can track with bounded steady
continuous bounded derivatives, up to second order forFOI- ; o

DC and up to third order for SOI-D?:. The correctness analysis state error the average of the tlme-varylng inputs whdge .

of the algorithms relies on singular perturbation theory for order difference is bounded. The S,OIUt'O”S to the dynamic
non-autonomous dynamical systems. When dynamic inputs are average consensus problem mentioned above each suffer
offset from one another by static values, we show thaBOI-DC  from at least one of the following shortcomings: they requir
converges to the exact dynamic average with no steady-state proper initializations that makes them prone to initiaiiaa

error. Simulations illustrate our results. errors and not robust to changes to agents joining and lgavin
the network; or they relay on knowledge of the dynamics
generating the inputs at each agent therefore they areddilo
Given a multi-agent system and a set of time-varying inpup specified classes of inputs which limits their applicipil
signals, one per agent, the dynamic average consensus prfbcontrast, the algorithms proposed in this paper do not
lem consists of designing distributed algorithms thatvallo suffer from these shortcomings.

individual agents to obtain the average of the inputs. Thi§tatement of contributionshe starting point for our algo-

problem has applications in numerous areas, includingimultithm design is the following observation: given a hypothet
robot coordination [1], distributed estimation [2], sensojcy) static average consensus algorithm able to convenge ‘i
fusion [3], [4], and distributed tracking [5]. In this papere finjtely’ fast, one could solve the dynamic average consensu
employ a singular perturbation approach to design provabpoblem by running it at each time. In practice, however,
correct dynamic consensus algorithms. some time is required for information to flow across the

Literature review:The work [3] generalizes the average statig'etwork, and hence the result of the repeated application
consensus algorithm proposed in [6] to track the averagd any static average consensus algorithm will operate with
of inputs with uniformly bounded rate which are differentsome error whose size depends on its speed of convergence
from one another by zero-mean white Gaussian noise. Tla@d how fast inputs change. A follow-up observation is that,
algorithm acts as a low-pass filter which allows agents tth some applications, the task is not just to obtain the @eera
track the average of the agents’ dynamic inputs with a no®f the dynamic inputs but rather to physically track thiseal
zero steady sate error, which vanishes in the absence pgssibly with limited control authority. In these caseghi
noise. The work [7] proposes a dynamic average consendi@e algorithms might not be implementable. We propose two
algorithm that, from a proper initialization, is able todka dynamic average consensus algorithms (termstiOrder-
with zero steady-state error the average of dynamic inputgput Dynamic Consensu6~OI-DC) and 2nd-Order-Input
whose Laplace transfer function has all its poles in the lefoynamic ConsensuéSOI-DC)) whose design incorporates
half-plane, and has at most one pole at origin. In [8], &0 time scales, a fast and a slow one. The fast dynamics,
proportional dynamic average consensus algorithm cak,tragvhich builds on the PI algorithm mentioned above, acts in
with a bounded non-zero steady-state error, the average ®Bimilar way to a static average consensus with a high rate
reference inputs whose weighted sum with their derivative®f convergence that is able to compute the dynamic input
is bounded. For static inputs, this algorithm converge$ witaverage at each time. The slow dynamics allows agents to
zero-steady-state error if it is initialized properly. $hiork ~ track this average at a feasible rate. The novelty here ts tha
also proposes a proportional-integral (P1) algorithm wahic these slow and fast dynamics are running simultaneously and
achieves dynamic average consensus, with a non-zero stealdys, there is no need to wait for convergence of the fast
state error, provided signals are slowly varying. The P#ynamics and then take slow steps towards the input average.
Our technical approach uses singular perturbation theory t
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I. INTRODUCTION



FOI-DC), the algorithms converge to ai(e)-neighborhood d°'(i) = Z;V:l a;;. A digraph isweight-balancedf at each

of the dynamic input average. Hekeis a design parameter. nodei € V, the weighted out-degree and weighted in-degree
Our algorithms do not require any specific initializatiordan coincide (although they might be different at different aejl

do not relay on knowledge of the dynamics generating the,o out-degree matrixD°! is the diagonal matrix whose
inputs. We also show how an appropriate variation of ouf,out _ d®(;), for i € V. The (out) Laplacianmatrix is
algorithms allows each agent to converge at their own desirg, "

¢ | ! = D°"'_ A. Based on the structure df, at least one
rate of convergence. Simulations illustrate our results. of the eigenvalues of. is zero and the rest of them have

Organization:Section Il introduces basic notation and conhonnegative real parts. Alsd,1y = 0. For a strongly
cepts from graph theory, static consensus, and singular peonnected digraph, zero is a simple eigenvalueLof A
turbation theory. Section Il presents the problem statéme digraphg is weight-balanced if and only i, L = 0.
Section IV motivates the use of singular perturbation tizeor

to solve the dynamic average consensus problem. Sectiond/ Static consensus

introduces two novel dynamic average consensus algorithms

and analyzes their correctness. Section VI illustratesr théHere, we briefly review the solution given in [8] to find in a

performance in simulation. distributed way the average of a set of static inputs.d ee
a strongly connected and weight-balanced digraph. Assume
[l. PRELIMINARIES each nodeé € {1,..., N} has access to a static inptitc R.

. . . o _ Consider the dynamics
This section gathers basic preliminaries on notation, fgrap

theory, static consensus and singularly perturbed dyramic xz = _(J;\C[i —u?) - Zj.V:l Lzl — Zj.vzl LV,
systems. vl =3 Lyl

A. Notation The paper [8] establishes that, starting from any initial
condition z*(0),*(0) € R, the variablez® converges to
+ Z;V:l u? exponentially fast for ali € {1,..., N}. Note
that the distributed implementation of this algorithm rizgs
each agent to know the weights of its in-neighbors. If the
graph is undirected, this requirement is trivially satigfie

1)

The vectorl,, represents a-dimensional vector with all
elements equal to one, adq represents the identity matrix
with dimension: xn. We denote byd " the transpose of ma-
trix A. We useDiag(A;1, -, Ay) to represent the block-
diagonal matrix constructed from matricds, ..., Ay. We
let 01(e) € O(d2(¢)) denote the fact that there exist positive

constants: and k such that D. Singularly perturbed dynamical systems

161(€)| < K[62(e)|, Ve < e Here we give a short account of the terminology employed

i . in singularly perturbed dynamical systems following [12,
For network related variables, the local variables at eac(f‘hapter 11]. Let

agent are distinguished by a superscripe.g., v’ is the

local input of agent.. We denote the aggregate vector of = f(t,x,z,¢), x(to) =mnle), (2a)
local variablegp's by p = (pt,...,p") € RV, ez =gtz z6), 2(to)=Cle). (2b)
B. Graph theory The use of a small constaat> 0 creates two-time scales

in the system, resulting into a fast and a slow dynamics.
ingular perturbation theory establishes precise cantiti
under which the behavior of the system follows that of
the limiting system where goes to0. We assume thaf
and g are continuously differentiable in their arguments for
(t,z,z,€) € [0,00)x Dy x D, x[0, €], whereD,, C R™ and
D, c R™ are open connected sets. When weeset 0 in
(2), the dimension of the state equation reduces fromm

andj is called anout-neighborof i. A directed pathis an ¢ b the diff tial i 2b) d tes int
ordered sequence of vertices such that any ordered pair ¢ because the differential equation (2b) degenerates into
e algebraic equation

vertices appearing consecutively is an edge of the digraph.
A digraph is calledstrongly connectedf for every pair of 0= g(t,x, 2,0). ©)
vertices there is a directed path between them.

A weighted digraphis a tripletG = (V, €, .A), where(V, ) We say that the model (2) is in standard form if (3) has
is a digraph andd € RV XV is a weightecadjacencymatrix k > 1 isolated real roots

with the property that;; > 0 if (i,5) € £ anda;; = 0, z = hi(t,x), ie{l,... .k}, ()
otherwise. A weighted digraph isndirectedif a;; = aj;

for all 4,7 € V. The weighted out-degreand weighted in- for each(¢, z) € [0, 00) x D,. This assumption assures that a
degreeof a nodei, are respectively,"d(i) = Z;V:l aj; and  well-definedn—dimensionateduced mode(slow dynamics)

Here, we briefly review some basic concepts from grap
theory and linear algebra following [11]. directed graph
or simply adigraph is a pairG = (V,&), whereV =
{1,...,N} is thenode seand& C V x V is theedge set
We make the convention that an edge frono j, denoted
by (i, j), models the fact that agefitcan send information
to 7. For an edg€i, j) € &, i is called anin-neighborof j



will correspond to each root of (3). To obtain tfth reduced distributed fashion. Then, the distributed dynamic cosasn
model, we substitute (4) into (2a), at= 0, to obtain algorithm becomes a two-time scale operation, a fast dynam-
ics to generate each average and a slow dynamics to track the
© = f(t,z,h(t,2),0), (®)  input average. Such dynamics could be realized by means

where we have dropped the subscriptfrom h. The O©f the following mixed discrete/continuous-time algonith

boundary-layersystem (fast dynamics) is running synchronously at each node {1,..., N}.
dz _ g(t,@,2,0), 7= f7 (6) 1 (Initialization) atk = 0 initialize 2*(0) € R"
dr € 2: while data existddo
wherex andt are treated as fixed parameters. The stability3: Obtain inputsu®(k) and (k)
and convergence properties of these dynamical systems cam Initialize 2¢(0),1(0) € R
be established via [12, Theorem 11.2]. 5: Solve the following dynamical equation
IIl. PROBLEM STATEMENT 2t = _(Zzz(vt) +ﬁu1(k:) +if(k))
. . . . - Zi:j L;; (2'7 (t) + v/ (t))7 (8)
We con&de_r a network oN agents with single-integrator i(t) = Z;V Lz (1)
dynamics given by ) }
o 6: Let z* converge to equilibriunz’
T =cC, 26{1,...,]\/}7 (7) 7: Define:
wherez’ € R is theagreement statandc’ € R is thedriving vk +1) = a'(k) — AtB (27 (k) + 2 (k) (9)

commandof agenti. The network interaction topology is

modeled by a weighted digraph. Agenti € {1,...,N} 8 k< k+1
has access to a time-varying input signél: [0,00) — R. 9 end while
The problem we seek to solve is stated next.

the above algorithm\t is the stepsize. Building on the
scussion in Section II-C, at each timestepghe dynamical

stem (8) acts as a static consensus algorithm with static
and weight-balanced. Design a distributed algorlthm Suﬁ?putﬂu ) This algonthm converges exponentially

that eachz’ in (7) tracks the average—z _, ul(t) Si(k) —

the inputs with a convergence rate less tflaln or equal io (k) =~ ZJ 1(ﬁu( ) + (k). Therefore, at any
. , 1 <N (?“nestepk forall: e {1,...,N}, (9) becomes

B > 0,ie,3x > 0 such thatlz(t) — 5 >, v ()] <

i 3(0)]e~P* for all £ > 0. . . - 1, :
Iﬁ|$ (0) - N Z =1 W (0 )|e orallt¢ > . 2i(k+ 1) =2'(k) — Atﬂ(xl(/{) _ _Z(uz(k) +uz(/€)))
For vector-valued inputs, one can apply the solution of NJ 1

Problems 1 in each dimension independently. Note that ﬂ?—sor small At, the stability and convergence of the above

algorithm (1) provides a solution to Problem 1 for static
ifference equation can be studied using the following
inputs and no pre-specified rate of convergence. It is wort

continuous-time model

noticing the fact thats in the problem statement is an upper

bound of the convergence rate, not a lower bound. This is ' =-By', ie{l,...,N}. (10)
motivated by scenarios where agents have limited control

authority and cannot implement arbitrary driving command¥"€"®

dictated by the consensus algorithm. This is normally the ; ; .

case when (7) corresponds to a model of a physical process. y=T -5 Z”Ja ie{l,....,N}. (11)

. _ .
Problem 1: (Dynamic average consensus with pre- spemﬂeua
least rate of convergence)et G be strongly connected

IV. MOTIVATION TO USE SINGULAR PERTURBATION The dynamical system (10) is a stable linear system with
THEORY FOR THEDESIGN OFCONSENSUSALGORITHMS  eigenvalue—g. Therefore, it converges to zero exponen-

hi | h le behind the d tially fast with rate 5. As a result,z” in (9) converges to
In this section, we explain the rationale behind the de+ ZJ L/ (t) exponentially, for alli € {1,...,N}.

sign of our algorithmic solutions to solve Problem 1. TheY
simplest dynamics that achieves for each ageift) — The aforementioned algorithm solves Problem 1, pro-

L Z;_v:l Wi (t), ast — oo, exponentially fast with rates, vided (8) converges to its eqwhbpum in a time interval lwvit
is the following length At. Hence, this algorithm is only conceptual: the cost

of solving (8) at each timestep makes it un-implementable.
i ;1 N ; 1 & y Inspired by the multi-time scale structure observed abaee,
== (x N Z“ ) N Z“ : use singular perturbation theory to weave together steps 5—
7 and devise a continuous-time dynamic average consensus
To decentralize this dynamics, we can make use of a mecalgorithm. By doing so, we avoid solving the fast dynamics
anism that generates the average of the inputs and also #iteeach iteration, i.e., the slow dynamics does not need to
average of the derivative of inputgpidly, in each agent in a wait for the fast dynamics to converge.



V. DYNAMIC CONTINUOUS-TIME CONSENSUS Based on the required conditions for input signals, the
ALGORITHMS VIA SINGULARLY PERTURBEDDYNAMICS algorithmFOI-DC satisfies the differentiability and Lipschitz
conditions of [12, Theorem 11.2] on any compact set of
In this section, we present novel continuous-time dynamic, » ,v). Thus, all the conditions of [12, Theorem 11.2]

average consensus algorithms whose de5|gn is based B satisfied globally. As a result, for alle {1,..., N},
singular perturbation theory. Fgr > 0 andi € {1,..., N}, (¢, €) —2i(t)| < O(e) wherezi(t, ) is the solutlon of the
consider the following dynamical systems singularly perturbed system (12) ant{¢) is the solution of
« 1st-Order-Input Dynamic ConsensugOI-DC): the slow dynamics. Recall (15), then for alk {1,..., N}
and allt > 0 we have
el = —(2 + Bul + i) — YL Lij (2 + v9), N
et =31 Ly, I Zuﬂ ) < O(e)+ ] (0 Z 0)|e?,
(12a) j=1
&' =—fa’ -2, (12b)  \which concludes our proof. [ ]
« 2nd-Order-Input Dynamic Consens(SOI-DC): The following result establishes in what serzed-Order-

, ) , ) N ) ) Input Dynamic Consensusplves Problem 1.
31— (0 2 VI ] - (2] J
s (2 +ﬁu tu ) = 2= Lis(2? 07 Theorem 5.2 (Convergence 8DI-DQ: LetG be a strongly

—e(fa’ + i), connected and weight-balanced digraph. Assume that the
yi o SV i . i ivati i N
€V = ijl §iz’, first, second, and third derivatives of the input signalat
(13a) each agent € {1,..., N} are continuous and bounded for
p—— e (13b) t > 0. Then, there exists* > 0 such that, for alk € (0, ¢*],
starting from any initial conditiong:(0), z(0),»(0) € RY,
The following result establishes in what senket-Order- the stater?, i € {1,..., N}, of the algorithm (13) converges
Input Dynamic Consensusolves Problem 1. exponentially fast with rate8 to an O(e)-neighborhood of

Theorem 5.1 (Convergence BDI-DC): Let G be a strongly % Zj’vzl u’(t).

connected and weight-balanced digraph. Assume that the firs  Proof: The proof of this result is very similar to the
and the second derivatives of the input sigmalat each proof of Theorem 5.1 so we only provide a brief sketch.
agenti € {1,..., N} are continuous and bounded for>  Notice that the parallelism between the slow and fast dy-
0. Then, there exists* > 0 such that, for alle € (0,¢*], namics ofSOI-DC and FOI-DC. As shown in the proof of
starting from any initial conditions(0), z(0), »(0) € R,  Theorem 5.1, these dynamics are both globally exponentiall
the stater’, i € {1,..., N}, of the algorithm (12) converges stable. Based on the required conditions for the input $igna
exponentially fast with ratgg to an O(e)-neighborhood of the algorithmSOI-DC also satisfies the differentiability and
% Z;V LU (). Lipschitz conditions of [12, Theorem 11.2] on any compact

Proof: We show the algorithm satisfies the condition$€t of &, z,v). Thus, all the conditions of [12, Theorem
of [12, Theorem 11.2] globally (for the terminology usedll.2] are satisfied globally. u
here we refer to Section II-D). The boundary-layer (fast)t is worth noticing that, with respect to the algorithms
dynamics of the algorithm (12) is, fare {1,..., N}, available in the literature, both (12) and (13) performkiag
i , . y N , , with a pre-specified rate of convergence, can handle arpitra
ar = —(Z"+ Bu(t) + w'(t) = 325z Lij (27 +07), initial conditions (and are therefore robust to initiatipa
% = Zij\il Ljiz. errors) and do not require any knowledge of the dynamics
generatmg the inputs. In the following, we show that the
algorithm SOI-DC has some advantages ovEOI-DC at
the expense of the extra condition on the input signals.

SH

Invoking the discussion in Section II-C, this fast dynamic
globally exponentially converges to

Lemma 5.1: §OI-DC for inputs offset by a static value):
Let G be a strongly connected and weight-balanced digraph.
Assume that the difference in the input signals is a static
Substituting (14) into (12b), and using the change of varieffset, i.e.,u’(t) = u.(t) + u*, whereu® is a constant scalar
ables (11), we obtain (10) as the reduced system (slofer each: € {1,...,N}. Then, starting from any initial
dynamics) model. FoB > 0, (10) is a stable linear system conditionsz(0), z(0),v(0) € RY, for anye > 0 and3 > 0,

with system matrix eigenvalue equal te5. Thus, for all the algorithmSOI-DC converges exponentially fast to the

:__Z But +u'), ie{l,...,N}. (14)

i €{1,...,N}, y'(t) converges globally exponentially fast exact input average, i.ex(t) — + Z;VZI u’(t) ast — oo
to zero with a rate of3, which V¢ > 0 is equivalent to forallie {1,...,N}.
1 Proof: Consider the following change of variables:
1)~ = S (1) < [2(0) — = > wI(0)je . (15)
N; Z p=2z+(Buc+ic)ly, g=x —uldy, n=[r R}TV



wherer = Tlﬁl andR ¢ RV*N-1 satisfiesR' R = Iy_;  agents to use the same paramgtés guarantee convergence.
andr"R = 0. We letn = (11,7,.5) Wheren; € R and Consider the dynamical system

N_l - I . . . . .
..y € RY 7 Then, we can re-write (13) as follows 5 = (s +ul)— sz'\[:j Lij(+ + i), 18a)
Ep:—(P‘Fﬂﬁ)—LP—LR?th (163) EVZ:Z?]:I Ljizj7
R P (16b) et =—(y' +i') = YL Lij(y7 + 1), 8b
e =0, (16c) i N : (18b)
=5 (160) N b
q=—-pq—p. i =—Blat = Bl — (18c)
We can show that the equilibrium point of this systemps< , .
_(% Z]-Vlﬁj)lzv Moy = _B(RTLR)—lRTﬂ o= where g* > 0's for all i € {1,...,N}. Note that this
1= ’ H bl

1 N " _ 1N : algorithm has the benefit of each agent using its own local
Ingi%{qzll_;;éu)r’l 03 fun c(tﬁ)r;v&ﬁéruéj ):112 )'_ gogsld;r_tgeal;%l- parameter. The drawback is the need for additional dis-

' tributed processing and communication. The following itesu
characterizes the convergence properties of this algoritis
proof is along the same lines of the proof of Theorem 5.1
and omitted for brevity.

,F’Q:N :nQ:N_,F’Q:N'
B.or. €.7. €.T _
V= 59 4+ gp P+ gNanTln-

The derivative of this Lyapunov function along the trajecto.l.heorem 5.3 (Convergence (£8): Let G be a strongly

ries of (161a), (16b) and (16d)1 IS ) connected and weight-balanced digraph. Assume that the
a1 Ve _ (25 T (27 p first and the second derivatives of the input signalat
V=P (L+L)p (2p+ A9 (2p+ AY), each ageni € {1,..., N} are continuous and bounded for
which for strongly connected digraph, it is negative semit > 0. Then, there exists* > 0 such that, for alk € (0, €*]
definite. For a strongly connected and weight-balanced ditarting from any initial conditions:(0), z(0), »(0) € RY,
graph, we haves = {p,q € RN 7y, y € RV 71|V =0} =  the stater’, i € {1,..., N}, of the algorithm (18) converges
{P,g € RY Moy € RN p = aly, p=—28¢, o € exponentially fast with ratg’ to an O(¢)-neighborhood of
R}. Next, we show that no solution of (16a), (16b) and (16d)11v Z;_V:l ul (t).
can stay inS except{p =0, g =0, 7,.5 = 0}. A trajec-

tory t = (p(t),q(t),n,.5(t)) belonging toS must satisfy VI. NUMERICAL EXAMPLES
p(t) = a(t)ly and p(t) = —25q(t). Then, (16a), (16b)
and (16d) become, respectively, Here, we present three numerical examples to demon-

strate the performance of the algorithi®I-DC, SOI-DC

caly = —aly — LR, y, (17a) and (18). First, we consider a randomly generated unduecte
€.y = 0, (17b) network (using Matlab BGL package [13]) consisting of
aly = Baly. (17c) N =100 agents. The local input signals are

From (17b),t — m,. 5 (t) must be constant. Recall that for u'(t) =a' sin(b't+¢'), ie{l,...,N}, (19)

strongly connected and weight-balanced digraghSLR
is invertible. Therefore, multiplying (17a) bR " from the
left, we conclude thaf),.,; = 0. As a result, from (17a)
and (17c) we deduce that— «(t) = 0. In other words,
{p =0, g =0, n,,y = 0} is the only solution of (16)
that identically belongs t&. Invoking the LaSalle invariant
principle [12, Theorem 4.4 and Corollary 4.2]), we concludé-igure 3 demonstrates the performance of the algo-
thatg — 0 and as a result’ — %Z;v:luj(t), for all  rithmsFOI-DC andSOI-DC when the difference in the input

where the input coefficients are generated randomly uni-
formly in the following rangesu’ ~ U[—5,5], b® ~ U[1, 2],

¢" ~ U[0,7/2]. Figure 1 shows the time histories of the
local internal states® generated by the algorithfROI-DC

for different values ok and 5.

1 € {1,...,N}, globally asymptotically ag — oo. The signals is a static offset. Figure 2 shows the network and
systems (16a), (16b) and (16d) are linear time-invarianipputs employed (we se = 0 in all the input signals).
therefore the rate of convergence is exponential. B Figure 4 demonstrates the performance of the algorithm (18)

Remark 5.1: (Relationship between the siz€ @ind¢): As When agents use differepts. Figure 2 shows the network
stated in Theorems 5.1, and 5/2,is the convergence rate and inputs employed (here, we sgt= 1 in all the input
of ¢ to an O(e)-neighborhood of3- Z;V:l u’(t). One can signals).
increase the rate of convergence by choosing a lardtow-

ever, to keep the two-time scale structure of the algorithms

one would then be forced to use a smakerQuantifying \ye have proposed two continuous-time dynamic average
this trade-off, and specifically the range of admissibleigal  ,nsensys algorithms for networks with strongly connected
of ¢ for a given/3, is left as future work. and weight-balanced interaction topologies. The proposed
We conclude this section by describing a variation of thetrategies have a two-time scale structure and do not equir
algorithms FOI-DC and SOI-DC that does not require all model information on the dynamic inputs. Using singular

VII. CONCLUSIONS
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error
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t
(b) e =0.001 andB =1

0 5
14 DC converges with zero steady-state error for arbitrary

10
(c) e =10.001 and3 = 3

Fig. 1: Performance evaluation of the algorithROI/-DC

with respect to different choices ferand 5 using a random
network of N 100 agents and inputs given in (19):
Smallere results in smaller error and largémresults in faster

convergence. The solid blue line is the average of the inputg, 5

and the dashed lines are the agreement states of agents.

10 ,;i" )

0 5 10 15 20
t
@e=1andg=1
5 i
0 L
0 5 10 15 20

t
(b) e =0.01 and3 =1

Fig. 3: Performance evaluation of the algorithfe®I/-DC

and SOI-DC with respect to input signals which are different
from one another by static values. Figure 2 shows the
network and inputs employed (here, with= 0). Dashed
(resp. solid) lines represent the error between the agnmeeme
states of the algorithrROI-DC (resp.SOI-DC) and the input
average. As guaranteed by Lemma 5.1, the algorigmi-

values ofe.

. e I ‘—-— gl e g2 w3 cvegd - b InputAveragé,
) u' (t) =5sin(t)+0 %—1—1, ‘)0 5 o i 20
u?(t) =5sin(t)+600.5t—1, +
3 _ .
\ 54%;gzﬁggiz;ﬁ(ﬁf?ﬁé Fig. 4: Execution of the algorithm (18) over the networked
) . . 1
@— u’(t) =5sin(t)+6 atar(t)+10. system of Figure 2, with = 1, ¢ = 0.01 and 3* =
? 1.2, B2 =1, g3 =05, * = 04, 5 = 0.2. Agenti

Fig. 2: A digraph and the corresponding input at each agertas rate of convergeng#, hence, agens has the slowest
rate of convergence.

perturbation analysis, we have shown that the algorithmss)
reach anO(e)-neighborhood of the dynamic input average
with an exponential rate irrespective of the initial coratis. [6
Future work will be devoted to rigorously characterizing th
O(e)-convergence neighborhood and extending the results to
networks with switching topology. v
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