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Abstract— We propose a distributed continuous-time algorithm
to solve a network optimization problem where the global cost
function is a strictly convex function composed of the sum
of the local cost functions of the agents. We establish that
our algorithm, when implemented over strongly connected and
weight-balanced directed graph topologies, converges exponen-
tially fast when the local cost functions are strongly convex and
their gradients are globally Lipschitz. We also characterize the
privacy preservation properties of our algorithm and extend
the convergence guarantees to the case of time-varying, strongly
connected, weight-balanced digraphs. When the network topol-
ogy is a connected undirected graph, we show that exponential
convergence is still preserved if the gradients of the strongly
convex local cost functions are locally Lipschitz, while it is
asymptotic if the local cost functions are convex. We also study
discrete-time communication implementations. Specifically, we
provide an upper bound on the stepsize of a synchronous
periodic communication scheme that guarantees convergence
over connected undirected graph topologies and, building on
this result, design a centralized event-triggered implementation
that is free of Zeno behavior. Simulations illustrate our results.

I. INTRODUCTION

Distributed optimization problems are pervasive in many
scenarios, including parallel systems, distributed computa-
tion, and multi-agent systems [1], [2], [3]. A common class
of distributed convex optimization problems considers the
constrained or unconstrained optimization of a sum of local
convex functions, which represent private local costs only
available to each agent. Such problems model a wide range of
practical network operations where the global cost function
is a performance metric consisting of a sum of local private
utility functions. Most of the current distributed optimization
solvers for these problems are discrete-time algorithms [4],
[5], [6], [7], [8] which employ consensus-based dynam-
ics to arrive at the solution. More recently, a number of
continuous-time dynamical solvers [9], [10], [11], [12] have
been introduced whose convergence properties are studied
using control-theoretic tools. Taking this perspective on the
design and analysis of optimization algorithms facilitates the
characterization of properties such as speed of convergence,
disturbance rejection, and robustness to parameter and model
uncertainties. This manuscript further contributes to this
body of work. Motivated by the practical constraints on
communication imposed by real-time implementations, we
also explore the development of distributed convex optimiza-
tion strategies that have agents performing computation in
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continuous time but only require communication between
neighbors at discrete instants of time. We study the stabil-
ity and convergence properties of our proposed algorithm
through standard Lyapunov analysis.

Literature review of continuous-time optimization algo-
rithms: The continuous-time, unconstrained convex optimiza-
tion algorithms proposed in [11], [12] are second-order
algorithms which use the inverse of the Hessian. These
algorithms require a special initialization and are guaranteed
to converge only for connected undirected graph topologies.
The algorithm proposed in [9] is a gradient-based scheme
whose convergence guarantees are valid for connected undi-
rected graph topologies. A variation of this algorithm with
additional convergence properties over strongly connected
and weight-balanced digraph topologies is presented in [10].
The protocol of [10] is obtained by introducing a gain in
the algorithm of [9] and characterizing the admissible range
for which this gain ensures convergence. The convergence
of both algorithms in [9], [10] is asymptotic. In general,
the works mentioned above do not characterize the privacy
preservation properties of the proposed algorithms. Privacy
preservation is a crucial requirement in network applications,
see e.g., [13] and references therein. In our specific setup,
privacy preservation is concerned with determining whether
agents inside or outside the network can discover any in-
formation about the local cost functions by listening to the
communication messages.

Statement of contributions: We consider an unconstrained
convex optimization problem whose objective function is
strictly convex and can be written as a sum of local cost
functions, one per agent. We propose a novel gradient-
based distributed algorithm for networks with strongly con-
nected and weight-balanced digraph topologies. We show
that the algorithm has an exponential rate of convergence
when the local cost functions are m-strongly convex and
their gradients are globally Lipschitz and characterize its
privacy preservation properties. The results are also valid
for networks with time-varying interaction topologies as
long as the digraph stays strongly connected and weight-
balanced. For connected undirected graph topologies, we
show that the global Lipschitzness of the local gradients can
be relaxed to local Lipschitzness. Also, for this case, we
prove that the algorithm converges, asymptotically, when the
local cost functions are convex. For implementation of the
algorithm over networks with wireless communication, we
also study discrete-time and event-triggered communication
implementations of the proposed algorithm. For networks



with connected graph topologies, we obtain an upper bound
on the suitable stepsizes that guarantee convergence for a
periodic discrete-time communication implementation. We
build on this result to design a centralized event-triggered
communication implementation which is free of Zeno be-
havior.

Organization: Section II introduces basic notation and con-
cepts from graph theory and convex functions. Section III
presents the problem statement. Section IV introduces our
novel continuous-time distributed convex optimization algo-
rithm and characterizes its properties on convergence and
privacy preservation. Section V discusses continuous-time
implementations with discrete-time-communication of the
proposed algorithm. Section VI illustrates our results in
simulation. Finally, Section VII gathers our conclusions and
ideas for future work. Due to the space limitations, the proofs
are omitted and will appear elsewhere.

II. PRELIMINARIES

In this section, we introduce our notation and some basic
concepts from convex functions and graph theory.

A. Notation

Let R and N denote, respectively, the set of real and natural
numbers. We use <(·) to represent the real part of a complex
number. The transpose of a matrix A is A>. We let 1n
(resp. 0n) denote the vector of n ones (resp. n zeros), and
denote by In the n × n identity matrix. We let Πn = In −
1
n1n1>n . When clear from the context, we do not specify
the matrix dimensions. For A ∈ Rn×m and B ∈ Rp×q ,
we let A⊗B denote their Kronecker product. For u ∈ Rd,
‖u‖ =

√
u>u denotes the standard Euclidean norm. For

vectors u1, · · · ,um, we let u = (u1, · · · ,um) represent the
aggregated vector. In a networked system, we distinguish
the local variables at each agent by a superscript, e.g., xi

is the local state of agent i. If pi ∈ Rd is a variable of
agent i, the aggregated pi’s of the network of N agents is
represented by p = (p1, · · · ,pN ) ∈ (Rd)N . A differentiable
function f : Rd → R is strictly convex over a convex set
C ⊂ Rd iff

(z− x)>(∇f(z)−∇f(x)) > 0, ∀ x, z ∈ C, x 6= z,

and it is m-strongly convex (m > 0) iff

(z−x)>(∇f(z)−∇f(x)) ≥ m‖z−x‖2, ∀ x, z ∈ C, x 6= z.

A function f : Rd → Rd is Lipschitz with constant M > 0,
or simply M -Lipschitz, over a set C ⊂ Rd iff

‖f(x)− f(y)‖ ≤M ‖x− y‖ , ∀x,y ∈ C.

B. Graph Theory

Here, we briefly review some basic concepts from graph
theory and linear algebra following [14]. A directed graph,
or simply a digraph, is a pair G = (V, E), where V =
{1, . . . , N} is the node set and E ⊆ V × V is the edge

set. An edge from i to j, denoted by (i, j), means that agent
j can send information to agent i. For an edge (i, j) ∈ E , i
is called an in-neighbor of j and j is called an out-neighbor
of i. A graph is undirected if (i, j) ∈ E anytime (j, i) ∈ E .
A directed path is a sequence of nodes connected by edges.

A weighted digraph is a triplet G = (V, E ,A), where (V, E)
is a digraph and A ∈ RN×N is a weighted adjacency matrix
with the property that aij > 0 if (i, j) ∈ E and aij = 0,
otherwise. A weighted digraph is undirected if aij = aji
for all i, j ∈ V . We refer to a strongly connected and
undirected graph as a connected graph. The weighted out-
degree and weighted in-degree of a node i, are respectively,
diin =

∑N
j=1 aji and diout =

∑N
j=1 aij . A digraph is weight-

balanced if at each node i ∈ V , the weighted out-degree
and weighted in-degree coincide (although they might be
different across different nodes). The (out-) Laplacian matrix
is L = Dout − A, where Dout = Diag(d1out, · · · , dNout) ∈
RN×N . Note that L1N = 0. A digraph is weight-balanced
if and only if 1TNL = 0 if and only if Sym(L) = 1

2 (L + LT )
is positive semi-definite. Based on the structure of L, at least
one of the eigenvalues of L is zero and the rest of them have
nonnegative real parts. We denote the eigenvalues of L by
λ1, . . . , λN , where λ1 = 0 and <(λi) ≤ <(λj), for i < j,
and the eigenvalues of Sym(L) by λ̂1, . . . , λ̂N . For a strongly
connected and weight-balanced digraph, zero is a simple
eigenvalue of both L and Sym(L). In this case, we order the
eigenvalues of Sym(L) as λ̂1 = 0 < λ̂2 ≤ λ̂3 ≤ · · · ≤ λ̂N .
For convenience, we define L = L⊗ Id and Π = ΠN ⊗ Id
to deal with variables of dimension d ∈ N.

III. PROBLEM DEFINITION

Consider a network of N agents with interaction topol-
ogy described by a strongly connected, weight-balanced di-
graph G. Each agent i ∈ {1, . . . , N} is endowed with a local
cost function f i : Rd → R which is assumed differentiable.
The global network cost function f : Rd → R is defined as
f(x) = ΣNi=1f

i(x). We assume this function to be strictly
convex. Our objective is to design a distributed optimization
algorithm such that each agent obtains the global minimizer
−∞ < x? <∞ of the feasible optimization problem

x? = arg min
x∈Rd

f(x)

using only its own local data and exchanged information
with its neighbors (note that the strict convexity of f implies
the uniqueness of the optimizer). We are also interested
in characterizing the privacy preservation properties of the
algorithmic solution to this distributed optimization problem.
Specifically, we aim to identify conditions guaranteeing that
no information about the local cost function of an agent is
revealed to, or can be reconstructed by, any other agent in
the network.

IV. DISTRIBUTED SOLUTION FOR CONVEX
OPTIMIZATION

To solve the distributed optimization problem of Section III,
we propose the following distributed optimization algorithm



v̇i = αβ

N∑
j=1

aij(x
i − xj), (1a)

ẋi = −α∇f i(xi)− β
N∑
j=1

aij(x
i − xi)− vi, (1b)

for i ∈ {1, . . . , N}, with α > 0, β > 0. The collective form
of this algorithm is as follows

v̇ = αβLx, (2a)

ẋ = −α∇f̃(x)− βLx− v. (2b)

Here, f̃ : (Rd)N → R is defined by f̃(x) =
∑N
i=1 f

i(xi).
This algorithm is distributed because each agent only needs
to receive information from its out-neighbors about their
corresponding variables in x. In contrast, the continuous-time
coordination algorithms in [9], [10] require the communica-
tion of the corresponding variables in both x and v. In the
following, we study the stability and convergence properties
of the algorithm (1) over directed and undirected graphs.

A. Strongly Connected, Weight-Balanced Digraphs

Here, we study the convergence of the distributed opti-
mization algorithm (1) over strongly connected and weight-
balanced digraph topologies. We first consider the case where
the interaction topology is fixed, and then discuss time-
varying interaction topologies. The following result identifies
conditions on the local cost functions {f i}Ni=1 and the
parameter β to guarantee the exponential convergence of (1)
to the solution of the distributed optimization problem.

Theorem 4.1 (Convergence of (1) over strongly connected
and weight-balanced digraphs): Let G be a strongly con-
nected and weight-balanced digraph. Assume the local cost
function f i, i ∈ {1, . . . , N}, is mi-strongly convex, dif-
ferentiable, and its gradient is M i-Lipschitz on Rd. For
mT = min{m1, . . . ,mN} and MT = max{M1, . . . ,MN},
let β > 0 be such that

α2(φ+1)mT+9αβλ̂2φ−4α2M2
T−4α2(φ+1)2> 0, (3)

is satisfied for some φ > 0 with φ+ 1 >
4M2

T
mT

. Then, for any
α > 0 and each i ∈ {1, . . . , N}, the algorithm (1) over G
makes xi(t)→ x? exponentially fast as t→∞, starting from
initial conditions xi(0),vi(0) ∈ Rd with

∑N
i=1 vi(0) = 0d.

In Theorem 4.1, note that the requirement
∑N
i=1 vi(0) = 0d

is trivially satisfied by each agent with the choice vi(0) =
0d. This is an advantage with respect to the continuous-time
coordination algorithms proposed in [12], which requires the
nontrivial initialization

∑N
i=1∇f i(xi(0)) = 0d, and in [11],

which requires the initialization on a state communicated
among neighbors and is thus subject to communication error.

Remark 4.1 (Role of the design parameters in (1)): We pro-
vide here several observations regarding the role of the de-
sign parameters α and β. First, note that there always exists

β satisfying (3) (for example, any β > 4(φ+ 1)2α/(9φλ̂2)).
We have observed in simulation that (3) is only a sufficient
condition for many cases, e.g., in the numerical example
reported here the algorithm (1) converges for any positive
α and β. We can interpret α > 1 and β > 1 as a way of
increasing the strong convexity coefficient of the local cost
functions and the graph connectivity, respectively. Thus, we
can expect that the rate of convergence of the algorithm is
increase with higher values of α, β. Our simulations have
confirmed this conjecture. The relationship between these
parameters and the rate of convergence of the algorithm (1)
is more evident in the case of quadratic local cost functions
f i(x) = 1

2 (x>x + x>ai + bi), i ∈ {1, . . . , N}. In this case,
the algorithm (1) is a linear time-invariant system where the
eigenvalues of the system matrix are −α, with multiplicity
of Nd, and λi, i ∈ {1, . . . , N} (λi’s are the eigenvalues of
L), with multiplicity d. Therefore, one can show that (1)
converges regardless of the value of α, β > 0 with an
exponential rate equal to min{α, β<(λ2)}. •
Next, we study the convergence of (1) over dynamically
changing, strongly connected, and weight-balanced digraphs
with uniformly bounded and piecewise constant adjacency
matrices. The proof of Theorem 4.1 relies on a Lyapunov
function with no dependency on the system parameters and
its derivative is upper bounded by a quadratic negative defi-
nite function. As such, we can readily extend the convergence
result to dynamically changing networks.

Proposition 4.1 (Convergence of (1) over dynamically
changing interaction topologies): Let G be a time-varying
digraph which is strongly connected and weight-balanced at
all times and whose adjacency matrix is uniformly bounded
and piecewise constant. Assume the local cost function f i,
i∈ {1, . . . , N}, is mi-strongly convex, differentiable, and its
gradient is M i-Lipschitz on Rd. Let β > 0 satisfy (3) with λ̂2
replaced by (λ̂2)min = min

p∈P
{λ̂2(Lp)}, where P is the index

set of all possible realizations of G. Then, for any α > 0
and each i ∈ {1, . . . , N}, the algorithm (1) over G makes
xi(t)→ x? exponentially fast as t→∞, starting from initial
conditions xi(0),vi(0) ∈ Rd with

∑N
i=1 vi(0) = 0d.

We conclude this section by analyzing the privacy preser-
vation properties of the algorithm (1). More specifically,
we characterize the topological requirements on the com-
munication graph and the knowledge about the algorithm’s
parameters and initial conditions that allow an agent to
reconstruct the local gradients of other agents in the network.

Proposition 4.2 (Privacy preservation under (1)): Let G
be a strongly connected and weight balanced digraph. For
α, β > 0, consider any execution of the coordination al-
gorithm (1) over G starting from xi(0),vi(0) ∈ Rd with∑N
i=1 vi(0) = 0d. Then, an agent i ∈ {1, . . . , N} can

reconstruct the local gradient of another agent j 6= i only if j
and all its out-neighbors are out-neighbors of i, and agent i
knows vj(0) and ajk, k ∈ {1, . . . , N} (here we assume that
the agent i is aware of the identity of neighbors of agent j



and it has memory to save the time history of the data it
receives from its out-neighbors).

The requirements of Proposition 4.2 are trivially satisfied
when agent i is aware that it is the only out-neighbor of
j and all agents know that the algorithm is initialized with
vj(0) = 0d, for all j ∈ {1, . . . , N}.

B. Connected Undirected Graphs

Here, we study the convergence of the algorithm (1) over
connected undirected graph topologies. While the results of
the previous section are of course valid for these topologies,
here using the structural properties of the Laplacian matrix
we establish the convergence of (1) for a larger family of
local cost functions. We are also able to analytically establish
convergence for any α, β > 0, as we show next.

Theorem 4.2 (Exponential convergence of (1) over con-
nected graphs): Let G be a connected graph. Assume the
local cost function f i, i∈ {1, . . . , N}, is mi-strongly convex
and differentiable on Rd, and its gradient is locally Lipschitz.
Then, for any α, β > 0 and each i ∈ {1, . . . , N}, the
algorithm (1) over G satisfies xi(t)→ x? exponentially fast
as t→∞, starting from initial conditions xi(0),vi(0) ∈ Rd
with

∑N
j=1 vi(0) = 0.

Note that the requirement that ∇f i is locally Lipschitz is
trivially satisfied if f i is twice differentiable. Next, we study
the convergence of (1) over connected graphs when the local
cost functions are only convex. Here, the lack of strong
convexity makes us rely on a LaSalle function to establish
asymptotic convergence to the optimizer.

Theorem 4.3 (Asymptotic convergence of (1) over con-
nected graphs): Let G be a connected graph. Assume the
local cost function f i, i ∈ {1, . . . , N}, is convex and
differentiable on Rd, and the global cost function f is strictly
convex and differentiable on Rd. Then, for any α, β > 0
and each i ∈ {1, . . . , N}, the algorithm (1) over G satisfies
xi(t) → x? as t → ∞, starting from any initial conditions
xi(0),vi(0) ∈ Rd with

∑N
i=1 vi(0) = 0d.

Remark 4.2 (Simplification of (1) for strictly convex local
cost functions): Using the LaSalle function identified in the
proof of Theorem 4.3, one can show that the algorithm

v̇i =

N∑
j=1

aij(x
i − xj),

ẋi = −∇f i(xi)− vi,

over a connected graph is also guaranteed to asymptotically
converge to the optimizer starting from any initial conditions
xi(0),vi(0) ∈ Rd with

∑N
i=1 vi(0) = 0d if the local cost

functions are strictly convex. •

V. CONTINUOUS-TIME EVOLUTION WITH
DISCRETE-TIME COMMUNICATION

The implementation of (1) requires continuous-time commu-
nication among the agents. While this abstraction is useful
for analysis, in practical scenarios the communication service
is only available at discrete instants of time. This observation
motivates our study here of discrete-time communication
implementations of the algorithm (1). Throughout the sec-
tion, we deal with communication topologies described by
connected undirected graphs. In our developments below, we
assume synchronous communication across the network. We
start by introducing some useful conventions. At any given
time t ∈ R≥0, let x̂j be the last known state of agent j ∈
{1, . . . , N} transmitted to its in-neighbors. If {tk} ⊂ R≥0
denotes the times at which agents communicates with their
in-neighbors, then one has x̂i = xi(tk) for t ∈ [tk, tk+1).
Consider the next implementation of the algorithm (1) with
discrete-time communication,

v̇i = αβ

N∑
j=1

aij(x̂
i − x̂j), (5a)

ẋi = −α∇f i(xi)− β
N∑
j=1

aij(x̂
i − x̂j)− vi. (5b)

Clearly, the evolution of (5) depends on the sequences of
communication times for the agents. Here, we consider
two scenarios. Section V-A studies periodic communication
schemes where all agents communicate synchronously at
fixed ∆ intervals of time, i.e., tk = ∆k. We provide a
characterization of the periods that guarantee the asymptotic
convergence of (5) to the optimizer. In general, periodic
schemes might result in a wasteful use of the communication
resources because of the need to account for worst-case
situations in determining appropriate periods. This motivates
our study in Section V-B of event-triggered communication
schemes that tie the communication times to the network
state for greater efficiency. Here, we discuss a synchronous
centralized event-triggered communication implementation
and refer the reader to [15] for a distributed asynchronous
implementation. We pay special attention to ruling out the
presence of Zeno behavior (the existence of an infinite
number of updates in a finite interval of time).

A. Periodic Communication

The following result provides an upper bound on the size of
admissible stepsizes for the execution of (5) over connected
graphs with periodic communication schemes.

Theorem 5.1 (Convergence of (5) with periodic commu-
nication): Let G be a connected graph. Assume the local
cost function f i, i ∈ {1, . . . , N}, is mi-strongly convex,
differentiable, and its gradient is M i-Lipschitz on Rd. Given
α, β > 0, consider an implementation of the algorithm (5)
with agents communicating over G synchronously every ∆
seconds starting at t1 = 0, i.e., tk = ∆k for all i ∈



{1, . . . , N}. Let 0 < ε < 1 and δ > 0 such that

φ+ 1 =
1

2mT
M2

T +
1

2mTα2
δ > 1, (6)

where MT and mT are given in the statement of Theorem 4.1,
and define

τ=
1

αMT + 1
ln
(

1 +
(αMT + 1)ζ

αMT + 1 + βλN
√

1 + α2(1 + ζ)

)
,

(7)

where ζ2 = 2ελ2 min{1−ε,δ}
αβλ2

Nφ+2α2λ2(1+φ)2
. Then, if ∆ ∈ (0, τ),

the algorithm evolution starting from initial conditions
xi(0),vi(0) ∈ Rd with

∑N
i=1 vi(0) = 0d makes xi(t)→ x?

exponentially fast as t→∞, for all i ∈ {1, . . . , N}.

Remark 5.1 (Dependence of the communication period on
the design parameters): It is interesting to note that the value
of τ in Theorem 5.1 depends on the graph topology, the
parameters of the local cost functions, the algorithm design
parameters α and β, and the variables ε and δ. One can
use this dependency to maximize the value of τ . Notice that
the argument of ln(.) in (7) is a monotonically increasing
function of ζ > 0. Therefore, the smaller the value of β,
the larger the value of τ . However, the dependency of τ on
the rest of the parameters listed above is more complex. For
given local cost functions, fixed network topology and fixed
values of α, β, the maximum value of ζ is when φ+ 1 is at
its minimum and ελ2 min{1− ε, δ} is at its maximum. •

B. Centralized Event-Triggered Communication

This section studies the design of a synchronous centralized
event-triggered communication scheme for the algorithm (5).
In contrast to periodic schemes, event-triggered implemen-
tations tie the determination of the communication times to
the current network state, resulting in a more efficient use of
the resources. Our discussion builds upon the examination
of the Lie derivative of the Lyapunov function used in the
proof of Theorem 5.1. In fact, the Lie derivative along (5) is
negative definite for all t ≥ 0 if we ensure that

‖Π(x(tk)− x)‖ ≤ ζ
√
‖x− x̄‖2 + ‖Π(v − v̄)‖2. (8)

Then τ , given in (7), is a lower bound on the time it takes for
‖Π(x(tk)−x)‖/

√
‖x− x̄‖2 + ‖Π(v − v̄)‖2 to evolve from

zero to ζ. The reason that we cannot employ (8) directly as an
event-triggered communication law is the lack of knowledge
of the solution x? of the optimization problem. We can show
that the Lie derivative of the Lyapunov function identified in
the proof of Theorem 5.1 is negative definite also when

‖Π(x(tk)− x(t))‖2 ≤ κ‖Πx(t)‖2, t ≥ 0, (9)

where κ is shorthand notation for

κ = 2
εδλ2 + 2φαβλ22ε

2(1− ε)
αβφλ2N + 2λ2α2(1 + φ)2

, (10)

(here 0 < ε < 1 and φ is given by (6)). Notice that this
condition can be evaluated without the knowledge of the
solution x? of the optimization problem. According to the

above discussion, the sequence of synchronous communica-
tion times {tk}k∈N ⊂ R≥0 for (5) should be determined
by (9). However, for a truly implementable law, one should
guarantee that no Zeno behavior occurs, i.e., the sequence of
times does not have any finite accumulation point. However,
observing (9), one can see that Zeno behavior will arise at
least near the agreement surface Πx = 0dN . The following
result details how we address this problem to design a Zeno-
free centralized event-triggered communication law.

Theorem 5.2 (Convergence of (5) with Zeno-free central-
ized event-triggered communication): Let G be a connected
graph. Assume the local cost function f i, i∈ {1, . . . , N}, is
mi-strongly convex, differentiable, and its gradient is M i-
Lipschitz on Rd. Consider an implementation of the algo-
rithm (5) with agents communicating over G synchronously
at times {tk}k∈N ⊂ R≥0, starting at t1 = 0, determined by

tk+1 = argmax{t ∈ [tk + τ,∞) |
‖Π(x(tk)− x(t))‖2 ≤ κ‖Πx(t)‖2}, (11)

where τ and κ < 1 are defined in (7) and (10), re-
spectively. Then, for any given α, β > 0 and each i ∈
{1, . . . , N}, the algorithm evolution starting from initial
conditions xi(0),vi(0) ∈ Rd with

∑N
i=1 vi(0) = 0d makes

xi(t)→ x? exponentially fast as t→∞.

Interestingly, given that (9) does not use the full state of the
network but rather relies on the computation of disagreement,
one can interpret it as an output feedback event-triggered
controller. Guaranteeing the existence of lower bounded
inter-execution times for such controllers is in general a
difficult problem, see e.g., [16]. Augmenting (9) with the
condition tk+1 ≥ tk + τ results in Zeno-free executions by
lower bounding the inter-event times by τ . The knowledge of
this value also allows a designer to compute bounds on the
maximum energy spent by the network on communication
during any given time interval.

VI. SIMULATIONS

Consider a network of 30 agents, where the local cost
function of agent i is given by

f i(x) = 0.5(x+ ei)2 + cie−a
ix + die−b

ix, i ∈ {1, . . . , N}.

The coefficients are chosen randomly uniformly as ai, bi,
ci, di ∼ U [0.1, 1] and ei ∼ U [−1, 2], Figure 1 illustrates
the performance of the algorithm (1) over a ring digraph
whose edges change direction with time multiple times.
Convergence is achieved as guaranteed by Proposition 4.1.
The plot also shows that larger values of β result in faster
convergence, cf. Remark 4.1. In all our simulations of this
example, convergence is achieved for any α, β > 0.

Figure 2(a)-(b) compares the performance the algorithm (5)
employing a periodic communication with the performance
of the continuous-time algorithm (1) over an undirected
connected ring communication graph. It is interesting to
note the comparable performance between both algorithms
observed in these plots.
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(c) α = 1, β = 5

Fig. 1: Executions of the algorithm (1) over a ring digraph whose direction changes every 5 seconds (weights are unitary):
the dashed lines (resp. solid blue line) show the time history of xi’s (resp. x?).
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(a) Algorithm (5) with α = 1,
β=2, ∆=0.15 sec.
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(b) Algorithm (1) withα=1,β=2

Fig. 2: Performance comparison between the algorithms (5)
and (1) over an undirected ring communication graph: the
dashed lines (resp. solid blue line) show the time history of
xi’s (resp. x?).
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VII. CONCLUSIONS

We have proposed a distributed continuous-time optimization
algorithm for a network with a strongly connected and
weight-balanced interaction topology and a strictly convex
global cost function which is the sum of local cost functions.
When the local cost functions are m-strongly convex and
their gradients are globally Lipschitz, we have established
that the algorithm converges exponentially fast. This property
is preserved in dynamic networks as long as the topology
stays strongly connected and weight-balanced. For connected
undirected graphs, we have proved that the exponential
convergence also holds when the local cost functions are m-
strongly convex and their gradients are only locally Lipschitz.
For such networks, we also showed that when the local
cost functions are convex the proposed algorithm converges
asymptotically. We have also investigated the discrete-time
implementation of our algorithm, providing an upper bound
on the suitable stepsize for connected graphs, and design-
ing a centralized, Zeno-free event-triggered implementation.
Finally, we have characterized the privacy preservation prop-
erties of our algorithm. Future work will focus on pursuing
the design of distributed event-triggered implementations and

the use of triggered control methods in other distributed op-
timization and coordination problems, including constrained,
time-varying, and online scenarios, and networked games.
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