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Abstract— We present a novel decentralized cooperative local-
ization algorithm for mobile robots. The proposed algorithm
is a decentralized implementation of a centralized Extended
Kalman Filter for cooperative localization. In this algorithm,
instead of propagating cross-covariance terms, each robot
propagates new intermediate local variables that can be used
in an update stage to create the required propagated cross-
covariance terms. Whenever there is a relative measurement
in the network, the algorithm declares the robot making this
measurement as the interim master. By acquiring information
from the interim landmark, the robot the relative measurement
is taken from, the interim master can calculate and broadcast
a set of intermediate variables which each robot can then use
to update its estimates to match that of a centralized Extended
Kalman Filter for cooperative localization. Once an update is
done, no further communication is needed until the next relative
measurement. The communication graph can be a time-varying
directed graph with the only requirement that it should have
a spanning tree rooted at the interim master.

I. INTRODUCTION

The successful deployment of multi-robot systems in tasks
such as search and rescue, environmental monitoring, and
oceanic exploration depends on the accurate localization of
these robots. In these applications, the environment is often
uncharted, dynamic, and may not be accessible a priori.
Thus, classical beacon-based localization algorithms [1] or
fixed feature-based Simultaneous Localization and Mapping
algorithms [2] may not be applicable. Fully or intermittently
GPS-denied environments also deprive these applications
from exploiting GPS navigation. A technique that can work
best for such multi-robot systems is a Cooperative Localiza-
tion (CL) strategy. This technique uses relative measurements
among the robots as a feedback signal to jointly estimate the
location of team members, resulting in increased position
accuracy for the entire team. However, the real benefit of CL
is when occasional access to accurate absolute localization
information is available to some members, which then is
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spread to other team members by means of CL. In this paper,
we present a novel decentralized CL algorithm.

Available CL algorithms are either centralized or decentral-
ized. Although centralized schemes (see e.g., [3], [4]) result
in less conservative estimations, their lack of robustness
and energy inefficiency make them less preferable. A major
challenge in developing a decentralized CL (D-CL) algorithm
is how to keep an accurate account of all cross-correlations
among robots without all-to-all communication at each time-
step. Ignoring these cross-correlations in future updates re-
sults in overconfidence in pose estimates that can lead to
divergence of the estimates. Also, keeping track of cross-
correlations benefits further the entire team from updating
relative measurements between any two members. In [5],
a suboptimal algorithm–where only the robot obtaining the
relative measurement updates its states–is proposed where,
in order to produce consistent estimates, a bank of Extended
Kalman Filters (EKFs) is maintained at each robot. Using an
accurate book-keeping of the identity of the robots involved
in previous updates and the age of such information, each
of these filters is only updated when its propagated state
is not correlated to the state involved in the current update
equation. The computational complexity, the large memory
demand, and the growing size of information needed at
each update time are the main drawbacks of this algorithm.
An alternative approach to develop D-CL algorithms is to
distribute the computation of components of a centralized
CL among team members. In a straightforward fashion,
this decentralization can be conducted as a multi-centralized
CL, wherein each robot broadcasts its own information
to the entire team. Then, every robot can calculate and
reproduce the centralized pose estimates, i.e., each robot
acts as a Fusion Center (FC) [6]. Besides a high-processing
cost for each robot, this scheme requires all-to-all robot
communication at the time of each information exchange.
A D-CL algorithm distributing computations of an EKF
centralized CL algorithm is proposed in [7]. To decentralize
the cross-covariance propagation, [7] uses a singular-value
decomposition to split each cross-covariance term between
the corresponding two robots. Then, each robot propagates its
portion. However, at update times, the separated parts should
be combined, requiring an all-to-all robot communication in
the correction step. Subsequently, [8] presents a maximum-
a-posteriori (MAP) D-CL algorithm in which all the robots
in the team calculate parts of the centralized CL. A D-
CL approach equivalent to a centralized CL is proposed



in [9]. This scheme handles both limited communication
ranges and time-varying communication graphs by using an
information transfer scheme wherein each robot broadcasts
all its locally available information to every robot within
its communication radius at each time-step. The broadcasted
information of each robot includes the past and present mea-
surements, as well as past measurements previously received
from other robots. The main drawback of this method is its
high communication cost, which may not be affordable in
applications with limited communication bandwidth. Finally,
CL techniques to handle system and measurement models
with non-Gaussian noises are discussed in [10], [11].

In this note, we propose a novel recursive D-CL algorithm
called Interim Master D-CL which is exactly equivalent
to the centralized EKF for CL of [7]. Our algorithm is
developed by using new intermediate variables that eliminate
the explicit calculation of the cross-covariance terms, result-
ing in decoupled propagation equations. The update stage
is performed by designating the robot making the relative
measurement as the interim master, which provides the rest
of the robots with the information they need to update their
pose and covariance in a manner that exactly matches those
of a centralized EKF for CL. In particular, the size of the
associated messages is independent of the size of the team.
To calculate the update equations, the interim master only
requires information from the interim landmark, the robot
that the relative measurement is taken from. Because the
propagation stage is fully decoupled, if there is no relative
measurement in the network, no intra-network communica-
tion is needed. The communication graph can be a time-
varying directed graph with the only requirement that it
should have a spanning tree rooted at the interim master,
see Fig. 1. Our algorithm can easily incorporate absolute
measurements, and is robust to permanent robot drop-outs.

II. PRELIMINARIES

In this section, we introduce our notation, terminology, and
the description of the mobile robotic group we study.

A. Notation and communication graph terminology

Let R denote the set of real numbers and Mn represent the
set of real positive definite matrices of dimension n×n. We
denote by 0n×m the zero matrix of dimension n ×m, and
by In the identity matrix of dimension n×n. The transpose
of matrix A ∈ Rn×m is A>. We use Diag(A1, · · · ,AN ) to
denote the block-diagonal matrix constructed from matrices
A1, . . . ,AN . For finite sets V1 and V2, we denote by V1\V2

the set whose elements consist of all the elements of V1

that are not in V2. We distinguish the variables associated
to robot i by the superscript i, e.g., xi is the pose (i.e.,
position and orientation) of robot i, x̂i is its pose estimate,
and Pi is the covariance matrix of its pose estimate. The
cross-covariance1 of the pose vectors of robots i and j is

1In this note, we use the term cross-covariance to refer to the correlation
terms between two robots in the covariance matrix of the entire network.
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Fig. 1: The spheres represent the robots and the dashed circles around them
represents the communication range of the robots. The circular sectors depict
the exteroceptive sensing zone of the corresponding robot. Here, robots 1

and 6 make relative measurements, respectively, of robots 2 and 3. For each
of robots 1 and 6, there is a spanning tree in the communication graph of
this team that is rooted at these robots.

Pij . We denote the propagated and updated variables, say
x̂i, at time-step k by x̂i-(k) and x̂i+(k), respectively. We
drop the time-step argument of the variables whenever it
is clear from the context. If qi ∈ Rni

is a local variable
at robot i in a network of N robots, the aggregated qi’s
is represented by q = (q1, . . . ,qN ) ∈ Rd, d =

∑N
i=1 n

i.
Finally, we define our communication graph terminology, see
e.g. [12]. A directed graph is a pair G = (V, E), where
V = {1, . . . , N} is the node set and E ⊆ V × V is the edge
set. An edge from i to j, depicted by an arrow from i to
j, means that agent i can send information to agent j. A
directed path is a sequence of consecutive nodes connected
by edges. A spanning tree of a directed graph G = (V, E)
is a subgraph G′ = (V, E ′) such that E ′ ⊆ E and there is a
root node in V connected to every other node in G′ through
unique directed paths.

B. Description of the mobile robot group

We consider a team of N mobile robots with processing
and communication capabilities. Every robot has a distinct
detectable identity. Every robot carries a proprioceptive sen-
sor to measure its self motion and exteroceptive sensing
devices to monitor the environment for localization features
in its measurement range, which here are other robots in
the team. Exteroceptive sensors can uniquely identify other
robots in the team and measure relative pose, range, bearing
or a combination of them. Every robot has a bounded
communication range, see Fig. 1, and the communications
happen in multi-hop fashion, i.e., every robot re-broadcasts
every received message intended to reach the entire team.
The motion of each robot is described by its own linear
or nonlinear equations of motion. The collective motion
equation of the team is given by:

x(k + 1) = f(x(k),u(k)) + g(x(k))n(k), (1)

where x, u, and n are, respectively, the aggregated vec-
tors of the pose xi ∈ Rni

, the input ui ∈ Rmi

and the process noise ni ∈ Rpi

, i ∈ V . Here,
f(x,u) = (f1(x1,u1), · · · , fN (xN ,uN )) and g(x) =
Diag(g1(x1), · · · ,gN (xN )), where, f i(xi,ui) and gi(xi),



are, respectively, the system function and process noise
coefficient function of the robot i ∈ V . We assume that the
process noises ni, i ∈ V , are independent zero-mean white
Gaussian processes with a known variance Qi = E[ni>ni].
We model the relative measurement collected by robot i from
robot j as:

zij(k + 1) = hij(x
i(k),xj(k)) + νi(k), zij ∈ Rni

z , (2)

where hij(x
i,xj) is the measurement model and νi is the

measurement noise of robot i ∈ V , assumed to be inde-
pendent zero-mean white Gaussian processes with known
covariance Ri = E[νi>νi]. All sensor noises are assumed
to be white and mutually uncorrelated. We show below how
using an EKF, relative measurements between robots are
used to improve the propagated states of the system. Here, we
assume that all the sensor measurements are synchronized.

III. BENCHMARK CENTRALIZED COOPERATIVE
LOCALIZATION ALGORITHM

In this section, we revisit the centralized EKF CL algorithm
of [7] as our benchmark solution. Our main contribution,
presented in the next section, is to offer a novel decomposi-
tion of the computations of this algorithm which results in a
decentralized implementation without the need to an all-to-
all communication.

Centralized EKF CL Initialization

For i ∈ V , we initialize the EKF algorithm at:

x̂i+(0)∈Rni

, Pi+(0)∈Mni ,P+
ij(0) = 0ni×nj , j ∈ V\{i}.

Centralized EKF CL Propagation

Using the collective motion model (1), the collective EKF
state and covariance propagation equations are:

x̂-(k + 1) = f(x̂+(k),u(k)), (3a)

P-(k + 1) = F(k)P+(k)F(k)> + G(k)Q(k)G(k)>, (3b)

where F = Diag(F1, · · · ,FN ), G = Diag(G1, · · · ,GN )
and Q = Diag(Q1, · · · ,QN ), with, for all i ∈ V , Fi =
∂

∂xi f(x̂i+(k),ui(k)) and Gi = ∂
∂xi g(x̂i+(k)). Then, for i ∈

V , the propagation equation (3) can be rewritten as:

x̂i-(k+1)= f i(x̂i+(k),ui(k)), (4a)

Pi-(k+1)= Fi(k)Pi+(k)Fi(k)>+Gi(k)Qi(k)Gi(k)>, (4b)

P-
ij(k+1)= Fi(k)P+

ij(k)Fj(k)>, j ∈ V\{i}. (4c)

Centralized EKF CL Update

While there are no relative measurements in the network, no
update happens, therefore,

x̂+(k + 1) = x̂-(k + 1), P+(k + 1) = P-(k + 1).

We assume that only one relative pose measurement takes
place at each time. Let robot a make a relative pose mea-
surement of robot b. The EKF update equation is obtained as

follows. The residual of the relative pose measurement and
its covariance are, respectively,

ra = zab − hab(x̂
a-(k + 1), x̂b-(k + 1)), (5a)

Sab =Hab(k+1)P-(k+1)Hab(k+1)>+Ra(k+1), (5b)

where (without loss of generality we let a < b)

Hab =
[1
0
···· · ·

a

−H̃a

a+1
0

···· · ·
b

H̃b

b+1
0

···· · ·
]
,

H̃a(k + 1) = − ∂

∂xa
hab(x̂

a-(k + 1), x̂b-(k + 1)), (6)

H̃b(k + 1) =
∂

∂xb
hab(x̂

a-(k + 1), x̂b-(k + 1)).

Substituting for (6) in (5b), we have:

Sab = Ra(k + 1) + H̃a(k + 1)Pa-(k + 1)H̃a(k + 1)>

+ H̃b(k + 1)Pb-(k + 1)H̃b(k + 1)>

− H̃b(k + 1)P-
ba(k + 1)H̃a(k + 1)>

− H̃a(k + 1)P-
ab(k + 1)H̃b(k + 1)>. (7)

Then, the Kalman filter gain is given by

K(k + 1) = P-(k + 1)Hab(k + 1)>Sab
−1.

We partition K as K =
[
K>1 , · · · ,K

>
N

]>
, where Ki ∈

Rni×ni
z is the portion of the Kalman gain used to update

the pose estimate of the robot i ∈ V . Then, for all i ∈ V ,

Ki = (P-
ib(k + 1)H̃

>
b −P-

ia(k + 1)H̃
>
a )Sab

−1. (8)

Finally, the collective pose update and covariance update
equations for the network are:

x̂+(k+1) = x̂-(k+1)+K(k+1)ra,

P+(k+1) = P-(k+1)−K(k+1)SabK(k+1)>,

where for i ∈ V and j ∈ V\{i}, it can be expanded as:

x̂i+(k+1) = x̂i-(k+1) + Kir
a, (9a)

Pi+(k+1) = Pi-(k+1)−KiSabK
>
i, (9b)

P+
ij(k+1) = P-

ij(k+1)−KiSabK
>
j. (9c)

Observe that, despite having decoupled equations of motion,
the source of the coupling in the propagation phase is the
cross-covariance equation (4c). Upon an incidence of a rela-
tive measurement between robots a and b, this term becomes
non-zero and its evolution in time requires the information
of these two robots. Thus, these two robots have to either
communicate with each other all the time or a centralized
operation has to take over the propagation stage. As the
incidences of relative measurements grow, more non-zero
cross-covariance terms are created and the communication
cost to perform the propagation grows, requiring the data
exchange all the time with either a Fusion Center (FC) or all-
to-all robot communications, even when there is no relative
measurement in the network. The update equations (9) are
also coupled and their calculations need in principle a FC.



IV. THE Interim Master D-CL ALGORITHM

In this section, we present our proposed Interim Master D-
CL algorithm which is a decentralized implementation of
the centralized CL algorithm of the previous section. Here,
we use the assumption below which generically is valid for
mobile robot models:

Assumption 1: Fi(k) is invertible for all k ≥ 0 and i ∈ V .

We start by introducing the new variables we use to develop
this decentralized algorithm. Let Φi ∈ Rni×ni

, for all i ∈ V ,
be a time-varying variable that is initialized at Φi(0) = Ini ,
which evolves as:

Φi(k + 1) = Fi(k)Φi(k).

Then, we write the propagated cross-covariances (4c) as:

P-
ij(k + 1) = Φi(k + 1)P̄ij(k)Φj(k + 1)>, (10)

where P̄ij ∈ Rni×nj

, for i, j ∈ V and i 6= j, is a time-
varying variable that is initialized at P̄ij(0) = 0ni×nj .
When there is no relative measurement at time k + 1, (10)
results in P̄ij(k + 1) = P̄ij(k). Next, when there is a
relative measurement, we rewrite the update equations (7)
and (8) of the centralized CL algorithm by replacing the
cross-covariance terms by (10):

Sab = Ra + H̃aP
a-H̃

>
a + H̃bP

b-H̃
>
b −

H̃aΦ
a(k + 1)P̄ab(k)Φb(k + 1)>H̃

>
b − (11)

H̃bΦ
b(k + 1)P̄ba(k)Φa(k + 1)

>
H̃
>
a ,

and the Kalman gain is

Ki = Φi(k + 1)Di, i ∈ V,

where

Di = (P̄ib(k)Φb>H̃
>
b −P̄ia(k)Φa>H̃

>
a )Sab

−1, i∈V\{a,b}

Da = (P̄ab(k)Φb>H̃
>
b −(Φa)−1Pa-H̃

>
a )Sab

−1, (12)

Db = ((Φb)−1Pb-H̃
>
b −P̄ba(k)Φa>H̃

>
a )Sab

−1.

Notice that due to Assumption 1, Φi(k), for all k ≥ 0 and i ∈
V , is invertible. Let r̄a = (Sab)

− 1
2 ra, and D̄i = Di(Sab)

1
2 ,

i∈V . Then, we can write the state estimate and covariance
equations (9a) and (9b) as follows:

x̂i+(k + 1) = x̂i-(k + 1) + Φi(k + 1) D̄i r̄a,

Pi+(k + 1) = Pi-(k + 1)−Φi(k + 1)D̄iD̄
>
i Φi(k + 1)>.

For i 6= j and i, j ∈ V , we let

P̄ij(k + 1) = P̄ij(k)− D̄iD̄
>
j ,

then the cross-covariance update (9c) can be rewritten as:

P+
ij(k + 1) = Φi(k + 1)P̄ij(k + 1)Φj(k + 1)>.

Therefore, at time k + 2, the propagated cross-covariances
satisfy (10). As such, we can reproduce the effect of the
cross-covariance terms of the centralized CL using the vari-
ables Φi(k)’s and P̄ij’s. Examining (5a), (6), (11) and (12)

shows that robot a can calculate these terms by acquiring
x̂b-(k+1) ∈ Rnb

, Φb(k+1) ∈ Rnb×nb

, and Pb-(k+1) ∈Mnb

from robot b if it knew P̄ij(k), ∀i, j ∈ V . Then robot a
can assume the role of the interim master and issue the
update terms for other robots in the network. Based on this
observation, we develop our Interim Master D-CL algorithm
by keeping a local copy of P̄lj’s at each robot i ∈ V , i.e.,
P̄

i
jl for all j ∈ V\{N} and l ∈ {j + 1, · · · , N}–because

of the symmetry of the covariance matrix we only need to
save, e.g., the upper triangular part of this matrix. In the
following we assume that if P̄

i
jl is not explicitly maintained

by robot i, the robot substitutes the value of (P̄
i
lj)
> for it.

The Interim Master D-CL works as follows:

Interim Master D-CL Initialization

Every robot i ∈ V initializes its filter as follows:

x̂i+(0) ∈ Rni

, Pi+(0) ∈Mni , Φi(0) = Ini ,

P̄
i
jl(0) = 0nl×nj , j ∈ V\{N}, l ∈ {j + 1, · · · , N}. (13)

Interim Master D-CL Propagation

Every robot i ∈ V propagates the variables below:

x̂i-(k + 1) = f i(x̂i+(k),ui(k)), Φi(k + 1) = Fi(k)Φi(k),

Pi-(k + 1) = Fi(k)Pi+(k)Fi(k)> + Gi(k)Qi(k)Gi(k)>.

Interim Master D-CL Update

While there are no relative measurements in the network,
every robot i ∈ V updates its variables as follows:

x̂i+(k + 1) = x̂i-(k + 1), Pi+(k + 1) = Pi-(k + 1),

P̄
i
jl(k + 1) = P̄

i
lj(k), j ∈ V\{N}, l ∈ {j + 1, · · · , N}.

If there is a robot a that makes a measurement with respect
to another robot b, then robot a is declared as the interim
master and acquires the following information from robot b:

landmark-message =
(
x̂b-(k + 1),Φb(k + 1),Pb-(k + 1)

)
.

Robot a makes the following calculations upon receiving the
landmark-message:

ra = zab − hab(x̂
b-, x̂a-),

Sab = Ra + H̃aP
a-H̃

>
a + H̃

>
b Pb-H̃b

− H̃aΦ
aP̄

a
abΦ

b>H̃
>
b − H̃bΦ

bP̄
a
baΦ

a>H̃
>
a ,

D̄a = (Φa−1ΦaP̄
a
abΦ

b>H̃
>
b −Φa−1Pa-H̃

>
a )Sab

− 1
2 ,

D̄b = (Φb−1Pb-H̃
>
b − P̄

a
baΦ

a>H̃
>
a )Sab

− 1
2 ,

where H̃a(k + 1) = H̃a(x̂a-, x̂b-) and H̃b(k + 1) =
H̃b(x̂

a-, x̂b-) are obtained using (6). We assume that the
communication graph has a spanning tree rooted at the
interim master, (seeFig. 1). The interim master passes the
following data, either directly or indirectly (by message



passing), to the rest of the robots in the network:

update-message =(
a, b, r̄a, D̄a, D̄b,Φ

b>H̃
>
b Sab

− 1
2 ,Φa>H̃

>
a Sab

− 1
2

)
.

Every robot i ∈ V , upon receiving the update-message, first
calculates, ∀j ∈ V\{a, b}, using information obtained at k:

D̄j = P̄
i
jbΦ

b>H̃
>
b Sab

− 1
2 − P̄

i
jaΦ

a>H̃
>
a Sab

− 1
2 ,

and then updates the following variables where j ∈
V\{N}, l∈{j + 1, · · · , N}:

x̂i+(k+1) = x̂i-(k+1)+Φi(k+1) D̄i r̄a, (14a)

Pi+(k+1) = Pi-(k+1)−Φi(k+1)D̄iD̄
>
i Φi(k+1)>, (14b)

P̄
i
jl(k+1) = P̄

i
jl(k)−D̄jD̄

>
l . (14c)

Remark 4.1 (Multiple synchronized relative measurements):
To accommodate multiple synchronized relative measure-
ments in the network, we use sequential updating (c.f. [13,
ch. 3],[14]). In the Kalman filter development, sequential
updating is possible under the assumption that the mea-
surements across time and sensors are white sequences.
To implement a sequential updating procedure in the In-
terim Master D-CL algorithm, we assume that all robots
have an identical pre-specified the sequential-updating-order
guideline indicating the priority order for robots to request
the landmark-message and broadcast the update-message.
One can expect that the updating order should not dramat-
ically change the results. Discussion regarding the update
ordering can be found in [14, page 10] and references therein.
The sequential updating procedure in the Interim Master D-
CL algorithm is then as follows: (a) every robot i ∈ V
making relative measurements informs the entire team that it
has made N i

z relative measurements; (b) in the order dictated
by sequential-updating-order, the interim master robots, one
by one, proceed by requesting the landmark-message from
their landmarks and (c) broadcasting the update-message. �

Relative measurements help the robots improve their lo-
calization accuracy but they can not bound the overall
uncertainty. As shown in [7], even when all the robots in
the team are making relative measurements simultaneously,
the observability matrix of the collective system is rank defi-
cient. This rank deficiency can be removed by incorporating
absolute pose measurements in the the process. As such,
the tracking performance can be improved significantly if
robots have occasional absolute positioning information, e.g.,
via GPS or relative measurements taken from a fixed land-
mark with a priori known absolute location. The inclusion
of absolute measurements in the Interim Master D-CL is
straightforward. The robot making an absolute measurement
is an interim master that can calculate the update-message
using only its own data and then broadcast it to the team.

Finally, observe that the Interim Master D-CL algorithm is
robust to permanent robot dropouts from the network. The
operation only suffers from a processing cost until all robots

become aware of the dropout. Also, notice that an external
authority, e.g., a search-and-rescue chief, who needs to obtain
the location of any robot, can obtain this location update in
any rate (s)he wishes to by communicating with that robot.
This reduces the communication cost of the operation.

A. Complexity analysis

For the sake of an objective performance evaluation, we
provide a thorough study of the computational complexity,
the memory usage, as well as communication cost per robot
per time-step of the Interim Master D-CL algorithm in terms
of the size of the mobile robot team N .

In the Interim Master D-CL algorithm, at the propagation
stage the computations per robot are independent of the size
of the team but at the update stage, for each measurement
update, because of (14c), the computation of every robot is
of order N(N−1)/2. As multiple relative measurements are
processed sequentially, the computational cost per robot at
the completion of any update stage depends on the number of
the relative measurements in the team, henceforth denoted by
Nz . Then, the computational cost per robot is O(Nz ×N2),
implying a computational complexity of order O(N4) for the
worst case where all the robots take relative measurement
with respect to all the other robots in the team, i.e., Nz =
N(N − 1). The storage cost per robot is of order O(N2)
which, due to the recursive nature of the Interim Master D-
CL algorithm, is independent of Nz . This cost is due to
the initialization (13) and update equation (14c) which are
of order N(N − 1)/2. We complete our analysis by eval-
uating the communication cost. There is no communication
required in the propagation stage of the Interim Master D-CL
algorithm. However at the update stage, due to the actions
outlined in Remark 4.1 intra-network communications are
needed. Recall that every robot re-broadcasts any received
message other than their landmark-messages. Let Nr be the
number of the robots that have made a relative measurement
at the current time. Therefore, to fulfill the steps (a) and (c)
of the sequential updating in Remark 4.1, every robot will
end up broadcasting, respectively, Nr and Nz times. Every
robot can be a master of Nb robots and/or a landmark of
Na robots, requiring that robot to, respectively, broadcast
Nb requests and Na landmark-messages, to fulfill step (b).
As Na ≤ Nr ≤ Nz and Nb < Nz , then the total number of
broadcast per robot is of order O(Nz), implying a worst case
(Nz = N(N −1)) broadcast cost of O(N2) per robot. If the
communication range is unbounded, the broadcast cost per
robot is O(max{Nb, Na}), with the worst case cost of order
O(N). The communication message size of each robot in
both single or multiple relative measurements is independent
of the group size N and as such for the worst case scenario
the communication message size is of order O(1).

The results of the analysis above are summarized in Table I
and are compared to those of a trivial decentralized imple-
mentation of the EKF for CL (denoted by T-D-CL) in which
every robot i ∈ V at the propagation stage computes (4)–
using the broadcasted Fj(k) from every other team member



TABLE I: Complexity analysis per robot of the Interim Master D-CL algorithm (denoted by IM-D-CL) compared to that of
the trivial decentralized implementation of EKF for CL (denoted by T-D-CL) introduced in Subsection IV-A.

Computation Storage Broadcast? Message Size Connectivity

Algorithm IM-D-CL T-D-CL IM-D-CL T-D-CL IM-D-CL T-D-CL IM-D-CL T-D-CL IM-D-CL T-D-CL

Propagation O(1) O(N2) O(N2) O(N2) 0 O(N) 0 O(1) None strongly
connected
digraph

Update per Nz

relative measur.
O(Nz×N2) O(Nz×N2) O(N2) O(N2) O(Nz) O(Nz) O(1) O(1) spanning tree

rooted at the
master robotsOverall worst case O(N4) O(N4) O(N2) O(N2) O(N2) O(N2) O(1) O(1)

∗Broadcast cost is for multi-hop communication. If the communication range is unbounded, the broadcast cost per robot is O(max{Nb, Na}) with the worst cost of O(N).

j ∈ V\{i}–and at the update stage computes (8) and (9)–
using the broadcast (a, b, ra, Sab, H̃a, H̃b, Ra, Pa-, Pb-)
from robot a that has made relative measurement from robot
b. Robot a calculates Sab, H̃a, H̃b by requesting (x̂b-, Pb-)
from robot b. We assume that multiple measurements are
processed sequentially and the communication procedure is
multi-hop. Although the overall cost of the T-D-CL algorithm
is comparable with the Interim Master D-CL algorithm,
this implementation has a more stringent communication
connectivity condition, requiring a strongly connected di-
graph topology (i.e., all the nodes on the communication
graph can be reached by every other node on the graph)
at each time-step, regardless of whether there is a relative
measurement incidence in the team. As an example, notice
that the communication graph of Fig. 1 is not strongly
connected and as such the T-D-CL algorithm can not be
implemented whereas the Interim Master D-CL algorithm
can be. Recall that the Interim Master D-CL algorithm needs
no communication at the propagation stage and it only
requires an existence of a spanning tree rooted at the robot
making the relative measurement at the update stage. Finally,
the Interim Master D-CL algorithm incurs less computational
cost at the propagation stage.

We close this section with a comparison study with re-
spect to the decentralized MAP algorithm of [8]. The
simulations reported in [8] indicate that the MAP strat-
egy for CL is less conservative than the EKF strat-
egy. However, this improvement can come with a de-
manding computation/communication/storage cost as a re-
sult of the MAP strategy’s batch processing nature. Re-
call that the MAP computes the localization estimates for
the entire time-steps until the current time-step kc, as
opposed to the Kalman filtering, a recursive algorithm,
which computes only the current localization estimate ev-
ery time-step. The decentralized algorithm of [8] con-
sists of a 7-step procedure, required to be repeated kcN
times, with a reported computational and a broadcast cost
of, respectively, {O(kcN),O(N + log(N)),O(kc),O(kc +
log(N)),O(kcN),O(kc+log(N)),O(kcN)} and {0,O(1), 0,
O(1),O(kc),O(1), 0} per repetition regardless of wether
there is a relative measurement among the team members.
Such procedure results in a total computational complexity of
order O(k2cN

2) and a broadcast cost of O(k2cN) per robot.
Finally, the storage cost per robot of the D-CL algorithm
of [8] is of order O(kcN). As such as time elapses and
kc grows the cost of D-CL algorithm of [8] can become
substantially larger than that of the Interim Master D-CL

algorithm. Note that the broadcast cost of [8] is calculated
based on the assumption that a broadcast by any robot can
reach the entire team. This cost will go up to deal with multi-
hop communications by means of re-broadcasting.

V. CONCLUSIONS

For a team of communicating robots, we presented a de-
centralized cooperative localization algorithm that is exactly
equivalent to the centralized EKF algorithm of [7]. In this
decentralized algorithm, the propagation stage is fully de-
coupled i.e., the propagation is a local calculation and no
intra-network communication is needed. The communication
between robots is only required in the update stage when
one robot makes a relative measurement with respect to
another robot. The algorithm declares the robot made the
measurement as interim master that can, by using the data
acquired from the landmark robot, calculate the update terms
for the rest of the team and deliver it to them by broadcast.
Future work involves extension of the algorithm to let new
robots join the group and also study the effect of missed
broadcast messages as well as asynchronous operation.
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