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Abstract

We discuss a variation of dilated matrix inequalities for the conventional Bounded Real
matrix inequality, and other similarly structured inequalities. Here, system matrices are
separated from Lyapunov matrix to allow the use of different Lyapunov matrices in multi-
objective and robust problems. The search involves a bounded scalar parameter that enters
the problem nonlinearly, and is dealt with a line search. To demonstrate the benefits of the
new dilated matrix inequalities over the conventional ones, an example of controller synthesis
with L2-gain performance measure (H∞ control) for a system with polytopic uncertainty
(robust problem) has been studied. It is shown that for the resulting robust problem the
performance obtained via the dilated form is at least equal to those of the conventional one.
Also, the connection between the proposed dilated form and the Full Block S-procedure is
discussed.

1 Introduction

Many control techniques such asH∞ andH2 use a quadratic Lyapunov function (V = xTY x | Y >
0 ) to obtain (Linear) Matrix Inequality ((L)MI) characterizations (e.g., see [2]). The resulting
MIs end up with non-convex entries that have products of the Lyapunov variables and system
matrices including control variables. In order to keep the problem convex or similar to a convex
search, the non-convex product term is usually replaced by a new variable. This causes some
degree of conservatism in multi-objective and robust analysis/synthesis problems by forcing
common Lyapunov matrices for all objectives (e.g. see [3, 8, 15]). To reduce this conservatism,
recently, several researchers have developed dilated matrix inequalities where by introducing
slack variable(s), the system and the Lyapunov variables are separated. Here, we denote the
slack variable G, the Lyapunov variable in a dilated MI X and the Lyapunov variable in a
standard MI X.

Often the equivalency between a dilated form and its standard counterpart is established
by applying the basic Elimination (Projection) Lemma. In the dilated forms the system and
Lyapunov variables are separated and there are only product terms of the system matrices
and the slack variable(s). Thus, to convexify the multi-objective/robust synthesis problems, a
common slack variable is forced for all objectives/corners of uncertainty polytope. This often
results in another form of conservatism. Generally, there is no guarantee of improvement using
the dilated forms if one only relies on Elimination Lemma to prove the equivalency of a dilated
form and its conventional counterpart.

The earliest, and best known, of the matrix dilation results are in the discrete time setting
[11, 12], where beside obtaining the dilated form, it is shown that the proposed dilated MIs
reduce to the standard ones using

(X , G) = (X,X). (1)

The significance of (1) is in multi-objective/robust problems. It guarantees that the solution
of the conventional approach is in the feasible solution set of the the dilated form. By seeking
different values for Lyapunov matrices of each objective/corner and the slack variable G, the
result can be improved. We refer to the approaches that establish the formal connection between
the dilated and standard forms in a manner similar to (1) as constructive methods.
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Although much effort has also been made in the continuous-time case, it is still an open
problem, mainly because dilation destroys the convexity in some important cases. Some of the
early and convex results are achieved in [20] and [1] via using a form of Elimination Lemma,
where a convex search for several important problems such as stability, H2, D-stability, are
obtained. In [5, 6], using a constructive approach, a dilated form which separates A from
Lyapunov variable X in the following MI is obtained:

AX +XAT + δ1X + δ2AXA
T +X∆T∆X < 0. (2)

By assigning different matrixes to A, δ1, δ2 and ∆, this general form covers several continuous-
time control problems such as stability, H2 and D-stability. It is also shown that the dilated
form recovers (2) by setting (X , G) = (X,−a(A − Ia)−1X) where a is a positive scalar which
appears in the dilated form. This provides formal guarantees that, in multi-objective problems
with a common A for all objectives, the dilation-based approach leads to results at least as
strong as those of the standard approach. However as indicated in [5], for robust synthesis
problems where A is different for each corner there are no such guarantees.

Neither of the two approaches above deal with synthesis inequalities of the L2-gain (i.e.,
Bounded Real matrix inequality) or several invariant set determination problems, e.g., energy-
to-peak or peak-to-peak. Roughly, these problems result in a constant term in (2). There
have been dilated MIs for Bounded Real matrix inequality, as well ([17, 21, 9, 18], among
others). However, there seems to be some shortcomings associated with these results. The
dilated form introduced in [17] works only for systems with Dcl = 0 , and both [17] and [21]
rely on Elimination Lemma to obtain their main results. As a result, as mentioned above (and
explained in further details below), the relationship between the original and dilated forms is not
clear, and thus there are no guarantees that the dilated forms (in the multi-objective and robust
problems) can surpass the original ones. Although the result in [9] is through a constructive
method, it exploits a structure that holds only in full state feedback problem. One of the best
results obtained so far is in [18] which does not have any of these limitations. However, similar
to others [17, 21, 9], it requires an additional scalar variable, entering the MI in a non-convex
form. Though such a non-convex form is problematic, the culprit is a scalar variable and it
can be addressed by a line search. To avoid this non-convexity, [10] derived a new matrix
inequality characterization for Bounded Real matrix inequality by transforming the system into
a descriptor form and invoking the results in descriptor system case. As shown in [10] through
some examples, less conservative results can be obtained for control synthesis for systems with
polytopic uncertainty. However there is no proven guarantee, in general, that this approach is
feasible all the time. Also, as point out in [21], the originally avoided matrix coupling reappears
in control synthesis because of the terms that include products of the Lyapunov matrix Q1 and
the system matrices A and C in Theorem 2 and Ai and Ci in Corollary 2 of [10].

Here, we present a dilated MI, that can be applied to the Bounded Real matrix inequality.
We also extend the results to H2 and α-stability as well (for extension to the matrix inequalities
that are in the invariant set for peak bounded disturbance and the peak norm of a vector over
an ellipsoid see [14]). This dilated MI is obtained explicitly through a constructive approach.
We show the dilated form recovers the standard MI with the choice of (X , G) = (X,X). This
establishes that in multi-objective/robust synthesis problems, using the proposed dilated form,
by seeking different Lyapunov matrices for each objective/corner, the result can be improved.
We also rely on a scalar variable that renders the problem non-convex and use line searches to
obtain the final results. However, this positive scalar variable belongs to a compact set with
known bounds, which makes the line search simpler.

In Section 3, L2-gain (H∞ norm) control design for a system with polytopic uncertainty
using the dilated form and the standard form of the Bounded Real Lemma is investigated.
We show the problem solved via the dilated form is guaranteed to achieve at least the same
performance level as the problem solved with the standard L2-gain MI. Through a numerical
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example, the proposed dilated form presented here is compared to the results by the dilated
MIs in [17, 21, 9, 18].

Since in the dilated MI obtained here Lyapunov variable appears alone with no multiplication
with system matrices, this new form is more promising to be applicable to control structures
other than full state feedback. For example, in [14], we used the proposed approach to design
a full order dynamic output feedback controller with a multi-objective design requirement of
L2-gain performance while avoiding saturation bounds for a given worst case disturbance bound.

In most results, the development of dilated forms appear somewhat ad-hoc. Recently, [13],
showed that a large number of results can be recast as applications of the basic Elimination
Lemma, corresponding to different choices of terms. Of course, how one comes up with the di-
lated forms and whether they recover or indeed improve the standard performance remain open.
Generally, an approach that classifies systematic implication and connection is not available.
To date, the most general systematic approach has been based on the Full Block S-procedure.
Full Block S-procedure has been used extensively in Linear Parameter Varying (LPV) problems
in which the control input and measurement output matrices are parameter dependant (e.g. see
[16, 4, 22]). In Section 4, we explore the relationship between the dilated forms derived here
and Full Block S-procedure.

The system we study has the standard model
ẋp = Axp +B1w +B2u
z = C1xp +D11w +D12u
y = C2xp +D21w

(3)

with the closed-loop {
ẋ = Aclx+Bclw
z = Cclx+Dclw

(4)

where the details differ in the state feedback and output feedback cases. The transfer function
from w to z is called Tzw(s).

2 A Dilated Matrix Inequality for L2-Gain

We will consider the problem of finding the L2-gain of the system (4).

Lemma 1 ((Bounded Real Lemma [2, 19]) ) Consider the closed-loop system (4), Acl is
stable and its L2-gain is less than γcon (i.e., ‖Tzw(s)‖∞ < γcon) if and only if σ̄(Dcl) < γcon
and there exists symmetric matrix X > 0 such that AclX +XATcl Bcl XCTcl

? −γconI DT
cl

? ? −γconI

 < 0 (5)

Matrix X, the Lyapunov variable, enters the equation through the Lyapunov function V =
xTX−1x. We have a multiplication between the system matrices (Acl, etc.) and Lyapounv
variable X in (5), which causes conservatism in multi-objective/robust synthesis problems by
forcing a common Lyapunov variables in order to obtain a unique solution for the controller.
Through the following theorem, we show how using matrix dilation one can decouple these
variables.

Theorem 1 The closed-loop system (4) is stable and its L2-gain is less than γnew (i.e., ‖Tzw(s)‖∞ <
γnew) if and only if σ̄(Dcl) < γnew, and there exist a positive constant 0 < ε < 1

2a (where a is
an arbitrary positive scalar), and square matrices X > 0 and G which satisfy:
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2aX Bcl 0 −X
? −γnewI DT

cl 0
? ? −γnewI 0
? ? ? 0

+QTGP + PTGTQ < 0 (6)

where P = [I 0 0 − 2εI] and Q = [(ATcl − aI) 0 CTcl I].

Proof 1 : The variable X is the Lyapunov variable, and G is an auxiliary variable (multiplier)
introduced for dilation. We show MIs (5) and (6) are equivalent. Suppose that MI (6) holds.
Consider the explicit bases of nullspaces of P and Q

NP =


I 0 0
0 I 0
0 0 I
1
2εI 0 0

 , NQ =


I 0 0
0 I 0
0 0 I

−ATcl + aI 0 −CTcl


By multiplying NQ and its transpose from the right and left sides, respectively, and considering

that QNQ = 0, the inequality (6) leads to AclX + XATcl Bcl XCTcl
? −γnewI DT

cl

? ? −γnewI

 < 0 (7)

Now if we define X = X and γnew = γcon, (5) holds; i.e., (6) implies (5). Next, multiplying (6)
from right and left by NP and its transpose respectively gives (2a− 1

ε )X Bcl 0
? −γnewI DT

cl

? ? −γnewI

 < 0

Thus (6) can have a solution only for ε < 1
2a .

On the other hand, suppose that (5) holds with X > 0. Note that (5) can be rewritten as
(7) by defining X = X and γcon = γnew. Since X > 0, for any ε̄ > 0 we have

RT (4ε̄X )−1R ≥ 0 (8)

where R1 = [−2ε̄X (ATcl − aI) 0 − 2ε̄XCTcl ]. The left hand side of the inequality above is of
order ε̄, it is therefore possible to find a sufficiently small ε̄ > 0 which for any positive ε ≤ ε̄,
the following holds

[left side of (7)] + [left side of (8)] < 0.

Applying the Schur complement to the above inequality, we obtain
He((Acl − aI)X ) + 2aX ? ? ?

BTcl −γnewI ? ?
CclX DT

cl −γnewI ?
−2εX (Acl − aI)T 0 −2εXCTcl −4εX

 < 0

By choosing G = GT = X , this inequality can be written as (6); i.e., satisfaction of (5) leads
to a specific choice for the matrices G and X that satisfy (6), with the same L2-gain estimate.

Remark 1 Theorem 1 is similar, structurally, to [9, 18]. However, in [9], the results for the
Bounded Real Lemma concern the full state feedback only (There, full state feedback gain, F , is
separated from the Lyapunov variable). Since we do not force any special structure on the con-
troller, it can be more promising for use in control structures other than full state feedback (see
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[14], where dynamic output feedback synthesis problem in a multi-objective problem is designed
using the dilated form here). The results in [18] and [14] are two special cases of dilated form
(6) when a is set to zero and 1

2 , respectively. Although the results in [18] are not restricted to
full state feedback control, it results in a search for ε over the range 0 < ε < ∞, which can be
an important numerical consideration in multi-objective and robust problems where more than
one ε is used (see Section 3.1). Using a positive scalar a results in a compact set for the line
search over ε. For the remainder of this note, we use a positive a and thus 0 < ε < 1

2a

2.1 Extension of the results to H2 and α-stability

Extension of the proposed dilation to some other important matrix inequalities is straight
forward, as many MIs, with some minor changes in the form of system matrices, can be seen
as the sub-blocks of (5). Thus the dilated form of these (L)MIs can be deduced from (6).
The key feature of these deduced dilated forms is that they all recover the standard matrix
inequalities by the choice of (X , G) = (X,X) which has no dependence on system matrices.
As we will see below, this feature is crucial to establish improvement through dilated forms in
multi-objective or robust problems. In this section, we give a dilated form for H2 performance
MIs and α-stability.

Standard H2 performance: Acl is stable with ‖Tzw(s)‖2 < νcon (Dcl = 0) if and only if there
exists X > 0 and Z > 0 such that(

AclX +XATcl XCTcl
CclX −I

)
< 0,

(
Z BT

cl

? X

)
> 0, trace(Z) < ν2con (9)

Theorem 2 Acl is stable with ‖Tzw(s)‖2 < νnew (Dcl = 0) if and only if for some 0 < ε < 1
2a

there exist X > 0 and Z > 0 such that 2aX 0 −X
? −I 0
? ? 0

 + He(QTGP) < 0,

(
Z BT

cl

? X

)
> 0, trace(Z) < ν2new (10)

where P = [I 0 − 2εI] and Q = [(ATcl − aI) CTcl I].

Proof 2 : We follow the same steps of the proof of the Theorem 1 with R in (8) being replaced
by:

R = [−2ε̄X (ATcl − aI) − 2ε̄XCTcl ]

α-stability: For matrix Acl to satisfy α-stability, i.e. σ(Acl) ⊂ {λ ∈ C : Re(λ) < −α, α > 0},
the standard requirement is that there should exist an X such that

AclX +XATcl + 2αX < 0. (11)

If one replaces Âcl ← Acl+(1/2)α, then (11) is the sub-block (1, 1) of (5). Therefore, considering
(6), the dilated form for this standard LMI is(

2aX −X
? 0

)
+ He(

[
(Âcl − aI)

I

]
G[I − 2εI]) < 0

In [14], we also obtain the dilated forms for the invariant set for peak bounded disturbance
and peak norm of a vector over an ellipsoid LMI.

Remark 2 For α-stability and H2 problem, Ebihara et al. in [5, 6] developed a dilated form
without dependency on scalar variable ε. But, the choice of (X , G) to recover the standard results
depends on system matrix Acl in (2), (X , G) = (X2,−a(Acl − aI)−1X). As indicated in [5],
this prevents us from establishing guarantees of improvement through dilated forms, similar to
Theorem 3 below, for robust or multi-objective problems with different Acl for each objective.
The dilated forms derived here all recover the standard results by setting (X , G) = (X,X) which
has no dependence on system matrices.
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3 L2-Gain (H∞) Control Design for a System with Polytopic
Uncertainty

To demonstrate the benefit of the proposed dilated MI, in [14], we solved a full order dynamic
output feedback controller design with a multi-objective design requirement of L2-gain perfor-
mance while avoiding saturation bounds for a given worst case disturbance bound. Here, we
consider the problem of L2-gain state feedback controller design for a system with polytopic
type uncertainty. The standard approach for L2-gain problem (see e.g., [2]) through the stan-
dard Bounded Real LMI (Algorithm 1) and the new dilated MI (Algorithm 2) can be stated as
follows

• Algorithm 1 (Conventional approach): For common Xi = X > 0 (i = 1, 2, ..., N where
N is the number of the polytope corners), minimize LMI (5) with respect to γcon, for all
i corners, i.e.,  He(AiX +B2F ) B1 XC1 + FTDT

12

? −γconI DT
11

? ? −γconI

 < 0

• Algorithm 2 (New approach using new dilated MIs): For Xi > 0, and common Gi = G
(i = 1, 2, ..., N), minimize γnew in (6) for all i corners, i.e.,
Xi + He(AiG+B2F − 1

2G) B1 GTCT + FTDT
12 −Xi +GT − 2εi(AiG+B2F − 1

2G)
? −γnewI DT

11 0
? ? −γnewI −2εi(CG+D12F )
? ? ? −2εi(G

T +G)

 < 0

Here we used a = 1
2 .

These inequalities are the direct result of replacing the closed loop matrices and calling
F = KX in (5) and F = KG in (6) respectively, where K is the full state feedback gain. In
Algorithm 1 to make the MI set convex we are forced to us common Lyapunov matrix for all
the corners. While, in Algorithm 2, we can use different Lyapunov matrices.

Theorem 3 ((Guarantee of Improvement) ) Algorithm 2 with a common auxiliary vari-
able, G, but with different Lyapunov variables, always achieves an upper bound estimate for the
L2-gain that is less than or equal to the L2-gain performance estimate achieved by Algorithm 1.

Proof 3 : If Algorithm 1 is solved, then Theorem 1 implies that there is a positive ε̄i such that
for any εi < ε̄i by taking Xi = G = GT = X and γnew = γcon, we can satisfy (6) with the same
closed-loop system derived by solving Algorithm 1. Therefore, any solution of Algorithm 1 can
be achieved by Algorithm 2, for small enough εi’s, without exploiting the ability to use different
Lyapunov matrices, which could only improve the results.

Remark 3 To reduce the computational cost of line search over εi’s, one can use a common ε
without losing the guarantee of improvement of Theorem 3 (ε < εi ∀i).

3.1 Numerical example: polytopic uncertainty

In this section, we investigate Algorithms 1 and 2 of Section 3 through a numerical example.
Consider the system below, taken from [17]

(
A B1 B2

C1 D11 D12

)
=



0 0 1 0 0 0
0 0 0 1 0 0
−k k −f f 0 1
k −k f −f 1 0

0 1 0 0 0 0
0 0 0 0 0 0.01

 (12)

6



where k ∈ [0.09 0.6] and f ∈ [0.0038 0.04]. This example is studied in [21] and compared
with the results of [17] and [10]. We call these tests T2, T3 and T4, respectively. Here, we solve
this example through Algorithm 2, denoted as T7. To complete the comparison, we add the
results by using the MIs of [9] as T5, and [18] as T6. The result of Algorithm 1 is called T1.
The best γ obtained are as follows:

T1 T2 T3 T4 T5 T6 T7
[2] [21] [17] [10] [9] [18] Her

2.044 1.867 1.924 2.044 1.638 1.548 1.548

All of the dilated forms are giving better or same result compared to the result of Algorithm
1, T1. The best result is obtained through test T6 for ε = 0.071, and T7 for ε = 0.035.

4 Full Block S-procedure Approach for Matrix Dilation

In this section we discuss connections between the dilated form (6) and the Full Block S-
procedure (see Appendix A for a short review of Full Block S-procedure). Full Block S-procedure
has been used extensively in Linear Parameter Varying (LPV) problems in which the control
input and measurement output matrices are parameter dependent (e.g. see [16, 4, 22]). Here, we
first review the robust L2-gain (H∞) characterization of [16] for parameter dependent systems
using the Full Block S-procedure.

Consider a closed-loop system (4), with time varying parametric uncertainties collected in
matrix ∆. Using the Linear Fractional Transformation (LFT) results (e.g., see [23]), any such
interconnected systems may be rearranged to fit the general framework below:(

Acl Bcl
Ccl Dcl

)
=

(
Â B̂1

Ĉ1 D̂1

)
+

[
B̂2

D̂12

]
4(I − D̂24)−1

[
Ĉ2 D̂21

]
(13)

As mentioned above, one way to obtain the L2-gain (to be precise, an upper bound estimate)
of (13) is via using the Bounded Real Lemma (1), and form (5). Then there would be a
multiplication between the uncertainty matrix ∆ and the Lyapunov variable X, resulting in
imposing common X for robust synthesis problems. Another way to solve this problem is
through the Full Block S-procedure as proposed in [16]. In the following, we review how the
Full Block S-procedure is used to obtain an equivalent matrix inequality representation for
(5) with X and ∆ decoupled. To obtain the decoupled form for (5), the following set of the
multipliers is defined in [16]:

P̃ =

{
P̃ = P̃T ∈ R(k+1)×(k+l) :

(
I
4T

)T
P̃

(
I
4T

)
≥ 0

}
(14)

where any such multiplier is partitioned as

P̃ =

(
P̃12 P̃12

P̃T12 P̃22

)
comformable to

(
I
4T

)
Theorem 4 ([16] ) The interconnection (13) is well-posed and the symmetric matrix X > 0

satisfies (5) iff there exist X > 0 and P̃ ∈ P̃ such that
∗
∗
∗
∗
∗
∗



T 

0 X 0 0 0 0
X 0 0 0 0 0

0 0 P̃11 P̃12 0 0

0 0 P̃T12 P̃22 0 0
0 0 0 0 1

γ 0

0 0 0 0 0 −γ





ÂT ĈT2 ĈT1
I 0 0

B̂T2 D̂T
2 D̂T

12

0 I 0

B̂T1 D̂T
21 D̂T

1

0 0 I

 < 0 (15)
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Several choices are possible for the class of multipliers, e.g., the use of constant block-
diagonal multipliers for robust control problems has been exploited in [7]. In [4] the following

P̃ which depends on the 4 with arbitrary G0 and G1 is used as the multiplier:

P̃ =

(
G04T +4GT0 −G0 −4GT1
−GT0 −G14T G1 +GT1

)
(16)

This class of multipliers renders the left hand side of the inequality in (14) identically zero,
therefore, to obtain the decoupled equivalent form for (5), one only needs to guarantee (15).
Note that using this multiplier, (15) is an equivalent form for (5) with the Lyapunov variable
X decoupled from uncertainty matrix ∆.

If one looks at the ∆ as the part of the dynamics that is intended to be separated from the
Lyapunov variable, Full Block S-procedure can be used to obtain dilated matrix inequalities.
The main challenge here is to represent the system dynamics in the LFT form (13). In the
following, we show that by a particular choice of the (non-unique) LFT form (13), our proposed
dilated form (6) becomes equivalent to the results obtained via Full Block procedure with fewer
free parameters. Consider(

Acl Bcl
Ccl Dcl

)
=

(
a I Bcl
0 Dcl

)
+

[
I 0
0 I

](
Acl − a I 0
Ccl 0

)[
I 0
0 0

]
(17)

Comparing this with the LFT form (13), we obtain:
Â = a I, B̂1 = Bcl Ĉ1 = 0, D̂1 = Dcl

B̂2 = [I 0], D̂12 = [0 I], D̂2 = 0

4 =

(
Acl − a I 0
Ccl 0

)
, Ĉ2 =

[
I
0

]
, D̂21 =

[
0
0

] (18)

Next, let us partition G0 and G1 in (16) as follows

G0 =

(
G01 G02

G03 G04

)
, G1 =

(
G11 G12

G13 G14

)
both comformable to

(
ATcl − a I CTcl

0 0

)
Then, using the multiplier P̃ with structure (16) and the LFT form with matrices given in (18),
and applying Schur complement, one can expand (15) as

2aX + He(G01(ATcl − aI)) X −G01 − (Acl − aI)GT11
? G11 +GT11
? G13 +GT12
? ?
? ?

−G02 − (Acl − aI)GT13 G01C
T
cl + (Acl − aI)GT03 Bcl

G12 +GT13 −GT03 −G11C
T
cl 0

G14 +GT14 −GT04 −G13C
T
cl 0

? G03C
T
cl + CclG

T
03 − γ Dcl

? ? −γ

 < 0 (19)

In synthesis problems the closed-loop matrices Acl etc. contain the unknown controller matrices.
Therefore, the above matrix inequality, because of the the terms such as AclG

T
01, AclG

T
11, AclG

T
13,

AclG
T
03, CclG

T
11, etc., is not convex. In order to obtain a numerical solution using efficient

numerical solvers, we need a convex form. To convexify, similar to [4], we use the following
structure for G0 and G1.

G0 =

(
G G02

0 G04

)
, G1 =

(
αG G12

0 G14

)
.

Both G11 and G01 are multiplied by ATcl and CTcl . For example in case of state feedback with
control gain K, we have

AclG
T
01 = AGT01 +B2KG

T
01, CclG

T
01 = C1G

T
01 +D12KG

T
01

AclG
T
11 = AGT11 +B2KG

T
11, CclG

T
11 = C1G

T
11 +D12KG

T
11
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These inequalities are often made convex by using new (intermediate) variables such as
F = KGT01 in the state feedback. In order to obtain the same unique controller gain, G11

should either be the same as G01 or at most a scalar multiple of it (in which case the scalar
enters as a decision variable). Here, G03 and G13, which also multiply CTcl and ATcl similar to
G01 and G11, are not square matrices and, to be able to obtain the controller gain, are set to
zero. Inequality (19) then becomes

2aX + He(G(ATcl − aI)) X −G− α(Acl − aI)GT −G02 GCTcl Bcl
? α(G+GT ) G12 −αGCTcl 0
? GT12 G14 +GT14 −GT04 0
? ? ? −γ Dcl

? ? ? ? −γ

 < 0 (20)

In case of dynamics full order output feedback controller, using an approach similar to [20],
one can obtain a characterization of (20) which is convex modulo a line search for α (see [14]
for details).

Remark 4 With a congruent transformation Diag[I − I I I I], for α = −2ε, and

G0 =

(
GT 0
0 0

)
, G1 =

(
αGT 0

0 G14

)
, (21)

the dilated form introduced in Theorem 1 becomes a special case of the dilated form (20) obtained
using Full Block S-procedure approach. Note that G14 +GT14 appears only in the third diagonal
entry with the rest of the row and column elements corresponding to it being zero. Therefore,
the solution is independent of G14.

Next, we show that G12, G02, G14, and G04 are redundant parameters in (20); and using
the special structure (21) to arrive at (15) is without any loss of generality. Note that we can
write (20) as

2aX + He(G(ATcl − aI)) ? ? ? ?
X −GT − αG(ATcl − aI) α(G+GT ) ? ? ?

0 ? 0 ? ?
CclG

T −αCclGT 0 − γ ?
BTcl 0 0 DT

cl −γ

+QTGP + PTGTQ < 0 (22)

where Q and P are

GT =
[
−GT02 GT12 GT14 −GT04

]
, P =

[
0 0 I 0 0

]
, Q =


I 0 0 0 0
0 I 0 0 0
0 0 I 0 0
0 0 0 I 0


Bases of nullspaces of P and Q are

NP =


I 0 0 0
0 I 0 0
0 0 0 0
0 0 I 0
0 0 0 I

 , NQ =


0
0
0
0
I


Applying the Elimination Lemma on (20), then

N T
P [right side of (20)]NP < 0

results in 
2aX + He(G(ATcl − aI)) ? ? ?
X −GT − αG(ATcl − aI) α(G+GT ) ? ?

CclG
T −αCclGT − γ ?

BTcl 0 DT
cl −γ

 < 0 (23)

9



while the trivial −γ < 0 is resulted from

N T
Q [right side of (20)]NQ < 0.

This means that (23) and (20) are equivalent or, in another word, the best γ obtained
subject to (20) is independent of G02, G04, G12 and G14. For the example of Section 3.1, the
particular LFT form suggested in [4] gives us the same numerical results as our technique here,
albeit with more search variables.

In summary, using the LFT in (17) (or (18)), after performing the simplifications required
for convexity, the Full Block S-procedure yields a result that is equivalent to our result, though
with more search variables. The Full Block S-procedure, as mentioned in [4] can be extended
to output feedback synthesis case. Given the structure and the seemingly non-performing extra
search variables, the extension could be somewhat cumbersome, compared to extensions of the
results presented here to output feedback case (see [14]).

Finally, as discussed in [4], the non-unique LFT representation remains an open issue. The
generality of the Full Block S-Procedure might offer the chance to interpret several of the
available dilated forms as the result of different choices for the underlying LFT form used to
model the dynamics, or the structure of the multipliers used. This, in turn, could provide some
insight to the underlying structural properties of the dilations used. This is left to future work.

5 Conclusions

We present dilated matrix inequalities for Bounded Real MI, which can easily be extended to
other common stability and performance MIs such as H2 or α-stability. The dilated form here is
obtained without imposing any structure on the closed-loop matrices. As a result, this dilated
form can be used in both state feedback and dynamic output feedback controller design design
in multi-objective problems. Moreover, we show that any solution of the Bounded Real MI can
be recovered by the dilated form by letting (X , G) = (X,X), similar to results in discrete time
dilated forms in [11, 12]. In multi-objective and robust control synthesis problems, despite the
common auxiliary variable G, we show that in our approach the controller design via dilated
forms can always recover the solution of the conventional approach. This affords the opportunity
for improved results by allowing different Lyapunov matrices for different objectives or corners
of uncertainty.

We also draw parallels between the proposed dilated form and the results based on the
more systematic approach generated by Full Block S-procedure. Natural extension to this part
of our work would be to look into the connection between different dilated forms and Full
Block S-procedure. The connection could be through a different LFT form or different choice
of multipliers. Perhaps a unified tool developed via the S-procedure framework can clarify the
source of the possible conservatism in dilated forms.

A Review of Full Block S-procedure

In the following, we review the full-block S-procedure as presented in [16]. Suppose S is a subset
of Rn, T ∈ Rl×n is full row rank matrix and U ⊂ Rk×l is a compact set of matrices of full row
rank. Also,

SU := S ∩ ker(UT ) = {x ∈ S : UTx = 0}
= {x ∈ S : Tx ∈ ker(U)} (24)

where U ∈ U.
Suppose N ∈ Rn×n is a fixed symmetric matrix. The goal is to render the implicit negativity

condition
∀U ∈ U : N < 0 on SU
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explicit. We want to relate this property, under certain technical hypotheses, to the existence
of a multiplier P that satisfies

N + T TPT < 0 on S and P > 0 on ker(U)

for all U ∈ U
The required technical condition will be related to a certain well-posedness property; here

it amounts to the complementarity of the subspace SU to a fixed subspace S0 ⊂ S that is suffi-
ciently large. Moreover, the quadratic form N is supposed to be nonnegative on this subspace.
To be precise, we require

dim(S0) < k and N ≥ 0 on S0.

Theorem 5 (Full Block S-procedure [16]) The condition

∀U ∈ U : SU ∩ S0 = 0, N < 0 on SU (25)

holds iff there exists a matrix that satisfies

∀U ∈ U :

{
N + T TPT < 0 on S
P ≥ 0 on ker(U)

(26)

In the intended application below, S is an unperturbed system, T picks the interconnec-
tion variables that are constrained by the uncertainties, the elements of U ∈ U define kernel
representations of the possible uncertainties, and SU is the uncertain system.
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