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Abstract—Estimation techniques such as Unscented Kalman
filter (UKF) are deployed for accurate joint location estimation
in cooperative localization of cyber physical systems (CPS),
e.g., to locate each robot in a cooperative mobile robotic
network in GPS-denied environments. In order to avoid
single point of failure in the centralized implementation of
such estimation techniques, the decentralization of estimation
algorithms has attracted considerable attention in the past
two decades. However, the design of decentralized algorithms
with reduced communication cost without loss in accuracy
for compute-intensive estimation techniques such as UKF
has been challenging. In the decentralized UKF, the tasks
are partitioned and computed locally at robot nodes. Data
communication overhead is overwhelming due to tight data
dependency between the robots’ computations. In this paper,
we present a CPS framework for UKF decentralization in
which computation and communication are tightly intertwined
and computation replication is deployed in order to reduce
the communication overhead among cooperative mobile robots.
We demonstrate and evaluate the performance of our proposed
work in a wireless network of 15 Raspberry Pi 3 B, with quad-
core 1.2GHz 64bit CPU, emulating a network of mobile robots
with onboard computation and communication capabilities.
Our experimental results show that the End-to-End execution
time of decentralized UKF prediction and update steps with
replication are faster by up to 12.29 and 3.57 times, respec-
tively, compared to the partially decentralized UKF algorithm
of [1].

I. INTRODUCTION

Cooperative cyber physical systems are driven by the tight
coordination between computational components, physical
sensors and the interaction with each other. Software devel-
opment for such systems, because of the tight integration,
heterogeneity of resources, as well as safety and application
timing requirements can be very complex. Networked mo-
bile robot operations are among the challenging cooperative
CPS applications. An important component of the networked
mobile robot operations is the localization of the robots.
The fast and accurate localization is important because a
delayed estimation will mislead navigation and other ap-
plications and may lead to a mission failure. Cooperative
localization is a reliable scheme for localizing a team of
communicating robots in GPS-denied environments (Figure

1). This localization technique uses relative measurements
among the robots as a feedback signal to jointly estimate
the location of robots.

Cooperative Localization (CL) algorithms deploy vari-
ous estimation strategies such as Extended Kalman filters
(EKF) [2], UKF [1], maximum likelihood [3], maximum
a posteriori (MAP) [4], and particle filters [5], [6], [7],
[8]. Among these techniques, EKF-based cooperative local-
ization algorithms, due to their recursive nature and rela-
tive ease of implementation, have been studied extensively.
However, the EKF, due to linearization approximation, is
known to be inconsistent for highly nonlinear systems or
when the filter has high initialization errors. UKF is an
alternative recursive estimation filter, which is proven to
work more consistently than the EKF for systems with
nonlinear state and measurement models (c.f. [9]). For large
systems, however, UKF is computationally more expensive
than EKF. This paper focuses on UKF-based cooperative
localization.

To increase the scalability and avoid a single point of
failure, decentralization of localization has been promoted
by robotics community. However, due to relative measure-
ment updates, the local estimates of the cooperative robots
are highly correlated. This creates a great challenge in
the decentralization of cooperative localization algorithms.
Decentralized cooperative localization algorithms normally
come with a significant processing and communication re-
quirements (see e.g., [10], [11], [12], [4], [13], [14]). Ig-
noring estimation correlations can lead to filter inconsistency
and even divergence [15], [16].

Various decentralization schemes using EKF formulations
have been proposed in the literature (see e.g., [10], [13],
[14], [17]). In UKF, the estimation equations of the robots in
the team are highly correlated. Thus, naive decentralization
(or partitioning) of UKF algorithm can result in a large
amount of data transfer among the robots. In [1], a partially
decentralized UKF is proposed. in which the UKF equations
are decoupled in a way that their computation is distributed
among all the cooperative robots. However, a shared memory
on a server is used to transfer data among robots, leading to



transfer of a large amount of data between the server and the
robots. The communication time is usually much higher than
the computation time, which makes this method inefficient.

The literature on the decentralized cooperative localization
algorithms that is reviewed above is on the algorithmic
decoupling of computations without loss in performance
and accuracy (or with acceptable performance loss). The
proposed methods lack rich knowledge on characteristics
of the underlying network and computational resources.
Wireless communication overhead, heterogeneity in embed-
ded computation, and sensing features of mobile robots
may incur significant delay and long execution time during
localization. Therefore, decentralization is challenged by the
tight coupling and integration of sensing, computation, and
communication among the mobile agents. Without careful
trade-off between computation and communication, a decen-
tralized algorithm may suffer from unacceptably long End-
to-End delay and may not be deployable for agents with high
mobility. This mandates us to develop a CPS framework to
overcome the complexity of decentralization of cooperative
localization based on complex estimation techniques such
as UKF without loss of of accuracy and computationally-
identical to the centralized method.

We treat decentralization of UKF as a problem of k-way
task partitioning problem. Each partition is a subgraph in
UKF task graph that is computed in each robot. Unlike [1],
the proposed method does not need a server for computation
or sharing data. Applying the partitioning method on the
target application, we observed that the majority of delay on
critical path comes from communication delay. In order to
reduce the data transfer further, we propose a communication
graph to minimize the number of data links followed by
computation replication based on Min-cut Max-flow Theo-
rem. Replication has been researched extensively in VLSI
CAD partitioning and design automation community (e.g.,
[18], [19]). The replication comes with the cost of an
increase in local computation. In our target application, mea-
surements show that the wireless communication delay is
significantly higher than computational delay and hence, the
computational delay overhead is negligible. The proposed
min-cut replication results in significant reduction of UKF
data transfer among the mobile nodes. The experimental
results show that the End-to-End execution time of decen-
tralized UKF prediction and UKF update steps are faster by
up to 12.29 times and 3.57 times, respectively, compared to
partially decentralized method [1].

II. BACKGROUND

A. Cooperative Localization

Localization is one of the basic applications in mobile
robots that provides other applications such as navigation
with location information. The fast and accurate localization
is important because a delayed estimation will mislead
navigation and other applications and might lead to mission
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Figure 1: Cooperative localization scheme.

failure. The time interval between execution of localization
(T ) should be small enough to be able to capture the motion
of the robot and provide the higher level applications with
accurate and almost real time location. In the GPS-denied
environment, because of accumulated proprioceptive sensors
error, the estimated location drifts from the actual location
after a while.

Cooperative Localization (CL) is a scheme in which
robots improve their localization accuracy by jointly pro-
cessing inter-robot distance measurements obtained by ex-
teroceptive sensors such as Kinect. In CL, a single mea-
surement between two robots can improve the localization
accuracy of other robots as well. For CL using Kalman filter
and its variants such as EKF and UKF, as it is shown in
Figure 1, robots share their control signals (U ), state vectors
(X), their uncertainty (P ), and sensors measurements to
obtain more accurate location (Pred X) and uncertainty
of estimated location (Pred P ) for further processing by
higher level applications such as navigation. In the context
of CL, the state vector (X) includes the global pose (position
and orientation of the robots) as well as possibly other
states potentially needed to model the dynamics of the
robots (for example, steering angle and actuation). In a
networked system of N robots, state vector of each robot
i is represented by ni state variables, which adds up to n
states of the system (X).

B. UKF

UKF is a recursive filter for estimating the state of a
system referred to as X . UKF is composed of prediction
and update steps. Prediction step runs periodically, and
update step runs whenever there is a measurement in the
system. In the prediction step, the state estimation of the
system will be predicted based on the control signals, self
motion measurements, the previous state of the system, and
covariance matrix. Update step runs whenever the system
receives a measurement.

1) Prediction Step: The prediction step for the collective
system with n states starts with computing the square root
matrix, as a triangular matrix, of matrix P using Cholesky
Decomposition (CD) method. After that, a set of 2n + 1
sample points, called Sigma Points (SP), is generated by
eq. 1b. In the equations, (c) denotes the cth column of the
matrix. The system model function will use SP s and U to



generate Transformed Sigma Points (eq. 1c). The predicted
state is the weighted arithmetic mean of T SP s (eq.1d). The
prediction covariance matrix (Pred P ) will be obtained by
eq. 1f using prediction error E (eq.1e). In the equations,
l ∈ {0, · · · , 2n}, c ∈ {1, · · · , n}, and w are system defined
constant.

CD = CholeskyDecomposition(P ) (1a)

SP (0) = x, SP (c,c+n) = x± (
√

(n+κ))CD(c) (1b)
T SP (l) = SystemModel(SP (l), U) (1c)

Pred X=
∑2n

i=0
w(i) T SP (i), (1d)

E(l)=T SP (l) − Pred X (1e)

Pred P =
∑2n

i=0
w(i)E(i)E

>
(i) (1f)

2) Update Step: Update step runs whenever the system
receives a measurement (Meas). For example, when robot
A measures the relative distance from robot B. UKF update
function fuses the measurement feedback with the predicted
state, computed by prediction step, using Kalman gain.
In update step, at first, innovation covariance (S), cross-
covariance (Pxz), Ez , and innovation (r) will be generated
by eq. 2 using the SP s.

T SP meas =MeasurementModel(SP ) (2a)

Pred Meas =
∑2n

l=0
w(l)T SP meas (2b)

r =Meas− Pred Meas (2c)
Ez,(l) = T SP meas(l)− Pred Meas (2d)

S=
∑2n

i=0
w(i)Ez,(i)E

>
z,(i) (2e)

After that, the Kalman gain (K) will be computed using
S and Pxz by eq. 3.

Pxz =
∑2n

l=0
w(l)E(l)E

>
z,(l) (3a)

K = Pxz S
−1 (3b)

Finally, the Update X and Update P will be computed
by eq. 4.

Update X = Pred X+Kr (4a)

Update P = Pred P−KSK> (4b)

Pred X and Pred P (the output of prediction step), or
Update X and Update P (the output of update step) will
be used as X and P for the next iteration of UKF.
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Figure 2: left: Vector X , middle: matrix P , right: matrix E
and their sub matrices

C. UKF in Cooperative Localization

In this paper, we denote the components of the aggregated
state vector X of the team corresponding to robot i by X[i].
In a similar way, the corresponding portion of P and E
matrices for robot i is denoted by P [i] and E[i]. Note that
each of these sub matrices has ni rows, which is the number
of states of robot i. Figure 2 shows the shape and size of
the main matrices1.

Figure 3 shows the task graphs for UKF prediction and
update steps, tagged with the equation numbers, where each
robot i sends its control signals (U [i]) to the UKF to compute
the T SP s using eq. 1c. At the end, the Pred X and
Pred P might be used as the X and P of the next iteration
of UKF. The navigation and other applications of robot i
will use Pred X[i] and Pred P [i]. In the update step, the
measured relative distance will be used to compute eq. 2.
The outputs, which are Update X and Update P , will be
used as the X and P of the next iteration of UKF, and also
will be sent to robots. The UKF update step runs whenever
there is a relative distance measurement in the system.

III. PROPOSED FRAMEWORK FOR UKF
DECENTRALIZATION

To increase the scalability and avoid a single point of
failure, it is necessary to decoupled UKF equations in a
way that the UKF computation is distributed and each
robot i computes P [i] and X[i], which are its own location
parameters. Due to sequential data dependency between the
robots to compute CD and Pred P (see Figure 4 and
[20]), all the robots are actively involved in computing
UKF and high amount of data transfer through wireless
communication would increase the execution time of UKF.
According to [1], all the computations of prediction step of
robots are independent, except for the computation of CD
and P (eq. 1a and 1f).

To fully decentralize the UKF, at design time, we partition
the task graph into a set of subgraphs. Each subgraph
is computed locally at the designated robot. In order to
provide an effective decentralization, we need to perform
optimizations to reduce the data transfer among the robots.

1Pred X and Update X are as the same size of X . Similarly,
|Pred P | = |Update X| = |P |, and |SP | = |T SP | = |E|.
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In this paper, our objective is to obtain a fully decentralized
UKF with reduced data links and transferred data size,
while keeping the computation of UKF decentralized. In
addition, we proposed a method that further reduces the
data transfer between robots by replicating the computations.
Note that the computation in our method is identical to the
computation in centralized UKF, so the accuracy of the filter
will not be affected.

A. Row-based UKF Partitioning (R-UKF):

As mentioned in the previous section, each robot i needs
X[i] and P [i] 2. The control signals (U [i]) is generated
locally. The UKF equations can be decoupled in a way that
each robot just computes what it needs. For example, robot
i just needs to compute SP [i]. There is data dependency
between computations of some sub matrices, hence each
robot has to acquire them from other robots. Based on eq.
1 and [20], in the prediction step, all computations can be
completely decoupled, except for CD and Pred P . CD[i]
depends on CD[1 : i − 1], and Pred P [i] depends on
E[1 : i− 1], which has to be transferred from other robots.

2Recall that we represent the corresponding ni number of rows in X , i.e.
from row ni*i to ni*(i+1), with X[i]. To show the corresponding rows of
X from ith robot to jth robot, we will use X[i : j]. The same representation
is used for other matrices as well.
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step

Hence, each robot i after receiving CD[1 : i − 1] and
E[1 : i − 1], computes the CD[i], SP [i], P [i], T SP [i],
Pred X[i], Pred P [i], and E[i]. Figure 4 shows the pro-
posed UKF prediction task graph. The task graph is divided
into sub-graphs associated with each robot i.

In our framework, this is referred to as Row-based UKF
partitioning. This partitioning will reduce the size of data
transfer among the robots. Note that the overall computation
and result will be identical to the centralized UKF. Unlike
[1], this partitioning does not need a server for computation
or sharing data. The UKF prediction task graph shows that
estimation of the location of robots is highly correlated and
dependent on each other. As a result, the computation is
sequential and parallelism is limited.

Figure 5 shows UKF update task graph. Each pair of
robots, e.g. robot A and robot B can occasionally measure
the relative distance between each other. Robot A that has
the relative distance measurement will receive SP [B] from
robot B. Then, using SP [A], SP [B], and measurement data,
robot A will compute S, r, and Ez . After that, starting from
robot 1, each robot j will compute K[j] using E[j], which
is generated locally, and using S, r, and Ez . In addition,
Robot j receives K[1 : j − 1] from robot j − 1 to compute
Update P [j] and Update X[j]. K[1 : j] will be sent to
robot j + 1 for computing the relative UKF update step.
Note that R-UKF has exactly the same computation of a
centralized UKF for CL.
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B. Communication Graph Refinement

Based on eq. 1, submatrices such as CD[i] and E[i]
that are computed in robot i have to be transferred to all
robots with label from i + 1 to N . We represent the N -
way partitioned UKF task graph by G = (V,L) where V =
V1, V2, · · · , VN . Vi is a set of UKF computation nodes in V
that belongs to robot i, and L represents the data dependency
between UKF computation nodes. Figure 6.a shows the data
dependency between the nodes. Sending CD[i] and E[i]
from Vi directly to all other agents with greater label (from
i+1 to N ) requires a complete communication graph, hence
N ∗ (N − 1)/2 communication links will be required which
impose a large computation and communication overhead.
Note that establishing a TCP/IP connection includes hand-
shaking and several packet transmission, and broadcasting
protocols such as UDP cannot be used because they are
unreliable. Since each Vi cannot finish the computation of
CD[i] before receiving CD[1 : i−1], it has to wait till Vi−1
finish the computation of CD[i − 1], and so on. Therefore
the computation of CD[i] is sequential, and its critical path
starts from V1 and ends in Vi. Considering the fact that
Vi has CD[1 : i − 2] when it computes CD[i − 1], it is
possible to send CD[1 : i − 1] from Vi−1 to Vi. This way,
communication links between V1 to Vi−2 and Vi are not
needed (see Figure 6.b). Reducing communication links will
reduce the communication overhead. Note that in the case
of UKF, the computation delay is small compared to com-
munication delay and the time overhead of establishing and
maintaining a TCP/IP link. The number of communication
links in the proposed communication model is N−1 which is
the minimum possible number of communication links for
a connected network. Note that the data transfer between
the nodes can be realized through ad-hoc or infrastructure
network. This discussion is out of the scope of this paper.

The proper partitioning and communication graph reduce
the communication cost, yet large matrices such as CD and
E have to be transferred. Therefore, we propose to deploy
a graph-based partitioning refinement technique called min-
cut replication to further reduce the size of transferred data.

Gf

a

d b

e
h

i

s

t

Min-cut

Replication 
set

a c

d b

e
h

i
g f

V1

V2

G

a c

d b

e
hi

g f

V1

V2
rb’2

35

2
6 6 2

2 5
3

2

2

Gr

(a) (b) (c)

Figure 7: An example of Min-cut Replication a) Original
graph, b) Min-cut and replication set, c) Replicated graph

C. Communication Minimization by Computation Replica-
tion on R-UKF (RR-UKF):

The partitioning, stand alone, cannot reduce the data
communication significantly. To further reduce the size of
data transfer between partitions, we replicate some of the
computations. Figure 7(a) shows data links between two
nodes V1 and V2. The size of data that has to be transferred
between V1 and V2 is 10. By replicating node b in partition
V2 (Figure 7(c)), the size of data transfer will be reduce
to 4 (2+2). To obtain UKF task graph with minimum data
transfer, we propose a two phases method. First, Min-cut
Max-flow replication is applied to prediction step of UKF,
which generates a task graph with replicated nodes. Second,
UKF update task graph is pruned given the changes in UKF
prediction task graph after replication. Then Min-cut Max-
flow replication is applied to the pruned UKF update task
graph. The result is a fully decentralized UKF with minimum
data transfer, and hence, minimum End-to-End delay.

Replication technique: In the proposed method, we
present how to minimize the data transfer using min-cut
replication technique on decentralized prediction and update
steps of UKF for CL. We are given a N -way partition of
G = (V,L) represented by V = V1, V2, · · · , VN . Vi is a set
of nodes in V that belongs to partition i, and L represents
the data dependency between nodes. The set of cut edges
is the set of edges C ∈ L that connects the partitions. Lets
consider two partitions V1 and V2 as shown in Figure 7.
Lets assume that I is the set of incoming edges to set V2
from V1. The objective is to find a subset of nodes in V1
called replication set R1 such that if it is replicated in V2, the
cutsize between V1 and V2 is minimized. After replication of
R1 in V2, the cut edges between R1 and V2 are eliminated
from the cut set and the input edges to R1 are added to
cutsize. R1 is a minimum replication set respect to V2 if the
cutsize after replication is minimum among all possible R1.

Figure 7 shows an example of G (a), min-cut and repli-
cation set (b), and the replicated graph (c). To find the
minimum replication set, we construct a network graph
Gf = (Vf , Lf ), where Vf includes nodes in V1 that are
reachable from I (node a, b, and d) and the nodes in V2



that are adjacent to I (node i, h, and e). To apply min-cut
max-flow theorem, two dummy nodes are added to Gf as
source (node s) and sink (node t). The min-cut max-flow
problem on this graph will separate the replication set from
the rest of the network. The replication set R1 is the subset
of nodes in V1 starting from min-cut edges to the nodes
adjacent to I (node b). After replication of R1 in V2, the cut
edges between R1 and V2 (edge b → h, and b → e) are
eliminated from the cut set and the input edges to R1 are
added to cutsize (edge a → b′). The replication in V2 in
respect to set V1 does not affect the edges between V1 and
other partitions. Hence, we can apply the min-cut replication
between every two partitions in a N -way partitioned task
graph independently.

To find the minimum weighted cut, min-cut max-flow
replication considers weight or capacity for the edges. In
N -way partition of UKF, the edges are weighted based on
the data size and the wireless communication cost (e.g.,
number of hops). The pseudo code for min-cut replication
is presented in algorithm 1. Next, we present replication
algorithm for UKF prediction and UKF update step.

Algorithm 1: Min-cut Max-flow Replication

input : Vi, Vj , Cij

output: V r
j

1 initialization:V r
j = Vj ;

2 Construct Graph Gf (Vi, Vj);
3 |C| ← min-cut max-flow on Gf ;
4 if |C| < |Cij | then
5 V r

j = V r
j ∪Rj

6 end
7 Return V r

j ;

We present our algorithm based on aforementioned min-
cut replication and show how the cut edge set between the
N -way partitions of UKF is drastically reduced both in
prediction and UKF update. The pseudo code of RR-UKF
is presented in Algorithm 2. The input to the algorithm in
sequential row-based N -way partition of UKF, known as R-
UKF. First, Min-cut Max-flow replication is applied on each
pair of partitions in decentralized UKF prediction (line [3-
6]). Then UKF update with respect to measurement between
Va and Vb is considered. The refinement of decentralized
UKF update is decomposed of two steps. The first step is
referred to as Prune-cut-edges (line [7]). Due to replication
in UKF prediction steps, some edges from cutsets between
the partitions are moved inside the partitions. If those edges
are deployed in the corresponding partition of update graph,
the edges are local and hence, those edges from the cut set
are removed. Visiting the cut edges in UKF update graph,
this function checks if any of them is removed in V r

p after
replication. The second step is to apply Min-cut Max-flow

replication between the N -way partitions of UKF update
similar to UKF prediction (line [8-11]).

Algorithm 2: RR-UKF-Replication

input : N-way partition of UKF prediction Task
Graph Vp = Vp1, Vp2, Vp3, · · · , Vpk and
Update(a,b) Task Graph Vu(a, b) =
Vu1, Vu2, · · · , Vuk

output: V r
p and V r

u

1 //Initialization;
2 V r

p = Vp, V r
p = Vp, V r

u = Vu
3 //=============== UKF prediction;
4 for each (Vpi, Vpj) where Cij 6= ∅ do
5 V r

pj ← Min-cut Max-flow replication (Vpi, Vpj)
6 end
7 Vu ← Prune-cut-edges (V r

p , Vu)
8 //=============== UKF update;
9 for each Vi and Vi on Vupdate do

10 V r
uj ← Min-cut Max-flow replication (Vui, Vuj)

11 end
12 Return (V r

p and V r
u )

Figure 8 demonstrates the decentralized UKF prediction
with min-cut replication. The minimum weight cut is shown
in the figure. The result shows that by replicating SP [1],
T SP [1], Pred X[1], E[1], Pred P [1], · · · , SP [i − 1],
T SP [i−1], Pred X[i−1], E[i−1],Pred P [i−1], in Vi,
the cut size will be minimized. As a result, each partition
vi, after receiving U [1 : i− 1] from previous partition, will
compute CD[1 : i]. Instead of getting E[1 : i − 1] and
CD[1 : i− 1] from previous partition, it will calculate them
using U [1 : i − 1] (new cut edge) and the Pred P [1 : i]
and Pred X[1 : i] from previous step of UKF which are
located in the same partition. The size of U [1 : i − 1] is
much smaller compared to E[1 : i− 1] and CD[1 : i− 1].

Figure 9 shows the partition between partitions. Partition
VA has the SP [B] and E[1 : A] as a result of replication
in UKF prediction V r

p . Hence, S ,r, and also K[1 : A] are
generated (refer to eq. 2 and 3 ). Partition VA will send
K[1 : A − 1] to partitions Vui where i < A. Partition A
will send only relative distance measurement between robots
A and B, to partitions Vui when i > A. Since SP [A] and
SP [B] already exist in V pr, all other parameters are locally
computed and hence those edges from cutset are removed.

IV. EXPERIMENTS

A. Experimental setup

To evaluate the proposed method, we implemented it in
a network of single-board computers, called Raspberry Pi
3 B, with quad-core 1.2GHz Broadcom BCM2837 64bit
CPU, 1 GB main memory, and a built-in WiFi module of
802.11 b/g/n. For these experiences, the CPU frequency
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is fixed to 1.2GHz. Each board i runs Linux kernel v4.9
and an application process that implements robot i’s task
for decentralized UKF in C++ with an open-source linear
algebra library EIGEN [21]. To create a realistic network
environment, we set up an isolated WiFi network with one
access point, Netgear N300 wireless router and N boards. In
the following, we report a median value for the End-to-End
delay which is obtained from 500 rounds of UKF.

In our experimental studies, we considered robotic team
scenarios with robots with 6 local states and with measure-
ment and control signals size of 3. In our implementation,
the main performance metric is the End-to-End delay from
robot 1’s initiation to robot N ’s completion of each exe-
cution cycle of UKF, consisting of the prediction and the
update steps, which include both the computation and the
communication delays on all the robots (or boards).

B. Evaluation of UKF End-to-End Delay

To demonstrate the effectiveness of our decentralized
UKF over the partially decentralized UKF [1], denoted by
Partially Decentralized UKF, we compare them in Table I.
Because of lack of space, in the tables, just the entries for
the odd number of robots has shown. Recall that the Partially
Decentralized UKF [1] assumes that there exists a server to
store the whole data of UKF algorithm and that for each
UKF cycle all robots takes part in the computation of UKF,
like RR-UKF. The number of robots, N , is varied from 3 to
15. From the table, it is clear that on average, the End-to-

Table I: End-to-end Delay Comparison between Partially
Decentralized UKF [1] and RR-UKF

UKF End-to-End delay measured at application level (msec)
UKF Prediction UKF Update

N [1] RR-UKF ratio [1] RR-UKF ratio
3 20.32 10.18 2.00 17.36 9.84 1.76
5 56.14 11.29 4.97 36.78 20.26 1.82
7 130.51 24.53 5.32 59.61 22.86 2.61
9 282.37 34.65 8.15 85.65 24.81 3.45
11 529.19 54.03 9.79 115.37 32.29 3.57
13 847.29 82.44 10.28 145.27 43.16 3.37
15 1322.86 107.61 12.29 186.21 54.44 3.42

Table II: Data Communication Comparison between R-UKF
and RR-UKF

UKF Prediction UKF Update
N R-UKF RR-UKF ratio R-UKF RR-UKF ratio

Total data bytes transmitted by all robots at application level
3 6120 216 28.33 4174 575 7.26
5 33840 720 47.00 10606 1727 6.14
7 99288 1512 65.67 19918 3455 5.76
9 218592 2592 84.33 32110 5759 5.58

11 407880 3960 103.00 47182 8639 5.46
13 683280 5616 121.67 65134 12095 5.39
15 1060920 7560 140.33 85966 16127 5.33

Total packet frames transmitted by all robots at kernel level
3 6 3 2.00 5 3 1.67
5 26 5 5.20 10 5 2.00
7 70 7 10.00 16 7 2.29
9 151 9 16.78 26 9 2.89

11 278 11 25.27 36 12 3.00
13 462 13 35.54 51 16 3.19
15 715 15 47.67 66 20 3.30

End-to-End delay measured at application level (in millisecond)
3 12.25 10.18 1.20 10.69 9.84 1.09
5 27.78 11.29 2.46 23.57 20.26 1.16
7 73.87 24.53 3.01 32.70 22.86 1.43
9 132.46 34.65 3.82 45.76 24.81 1.84

11 243.11 54.03 4.50 61.55 32.29 1.91
13 396.43 82.44 4.81 74.45 43.16 1.73
15 636.12 107.61 5.91 92.02 54.44 1.69

End delay measured for RR-UKF is reduced by a factor of
up to 12.29 for prediction step and by a factor of 3.57 for
update step, compared to Partially Decentralized UKF [1].

To indicate the effect of reducing the size of transferred
data using the replication technique in decentralized UKF,
we compare our row-based decentralized UKF implemen-
tation without (R-UKF) and with computation replication
(RR-UKF). Table II shows the total network traffic and the
on board End-to-End delay measured for each UKF iteration
in R-UKF and RR-UKF. Total data bytes transmitted by all
robots at application level in RR-UKF have been drastically
reduced up to 140 times for prediction step and 7.26 times
for update step in comparison with R-UKF.

Computation replication eliminates transmission of CD,
E and EZ between robots and replaces with Measurment
and U in the transmission which are much smaller. Thus,
it leads to significant reduction in the total packet frames
transmitted by all robots at kernel level. The reduction ratio
is up to 47.67 for prediction step and to 3.3 for update step.



The reason why this reduction ratio is smaller than that of
the transmitted data bytes is that every packet frame, whose
maximum size is 1500 bytes in our WiFi network, does not
convey the same number of data bytes depending on the
network I/O behavior of the application. In addition, the
replicated computations increases the run time. As a result,
the End-to-End delay from robot 1 to robot N required for a
whole UKF cycle is reduced from 636 ms (R-UKF) to 107
ms (RR-UKF) for prediction step when N=15. For update
step, it is reduced from 92 ms (R-UKF) to 54 ms (RR-
UKF). This significant reduction in the End-to-End delay
allows each robot to react much faster in response to the
resulting localization data of other robots.

V. CONCLUSIONS

Cooperative localization is a method for increasing the
localization accuracy within a network of cooperative robots.
Usually, probabilistic estimation algorithms such as EKF
is used for processing the data shared by the group. UKF
is a variant of Kalman filter, which is more accurate but
has more computation, and decentralization of such filters
with tight correlation among its tasks requires a large data
transfer between agents. We showed that the size of the
transferred data can be reduced by applying a replication
technique. Our experimental results showed that the End-
to-End execution time of the decentralized UKF prediction
and update steps with replication are faster by up to 12.29
and 3.57 times compared to the partially decentralized UKF
algorithm of [1]. In future, we plan to extend our work to
include the delay and computational complexities of distance
measurement sensors as well as to consider probabilistic
estimation algorithms other than UKF.
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