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Abstract— This paper proposes a learning-based bias correction
method to improve the measurement accuracy of the ultra-wideband
(UWB) ranging sensors. Our approach uses multiple artificial neural
networks (ANNs) for the UWB line-of-sight (LoS) and non-line-of-sight
(NLoS) measurements scenarios discrimination and bias-free range
prediction for each scenario respectively. The innovation in our work
includes a novel set of features that are readily available on low-cost
UWB ranging sensors to train the ANNs and collecting the training data
via the OptiTrack motion capture camera system. OptiTrack system
allows us to collect measurements between an UWB sensor mounted
on a moving pedestrian and a set of stationary UWB sensors, resulting
in collecting a diverse set of training data at various relative poses
between the UWB transceivers. The effectiveness of our OptiTrack-
aided supervised learning-based UWB bias correction (OLUC) method is demonstrated via a set of pedestrian localization
experiments, which show our method results in significantly improved localization accuracy.

Index Terms— UWB ranging, OptiTrack, machine learning, bias correction, neural network, localization

I. INTRODUCTION

RAdio frequency (RF) communication-based localization
techniques that use Time-of-Flight (ToF) ranging [1]

between a transceiver on a mobile agent (e.g., pedestrians,
unmanned aerial vehicles, and mobile robots) and a set of
pre-installed beacon transceivers with known locations have
been proposed as a practical solution for some applications
such as asset tracking indoors where the Global Navigation
Satellite System (GNSS) fails to provide accurate location.
Among various RF signals for ranging, the Ultra-wideband
(UWB) signal has received considerable attention for indoor
localization applications [2], [3]. The short impulse of the
UWB signals makes them less susceptible to interfering with
each other and with other coexisting radio signals such as
WiFi and Bluetooth [4]. The low power emission of the
UWB signals also makes them energy-efficient [4]. Comparing
to radar-based techniques, UWB has better accuracy ratios
and higher signal-to-noise ratios [5]–[7]. Other favorable at-
tributes include low cost, high time-resolution, and obstacle-
penetrating ranging [5], [8]–[10] that enables non-line-of-
sight (NLoS) ranging. Nevertheless, a number of challenges
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should still be resolved to ensure high accuracy UWB ranging.
NLoS and multi-path radio propagation can lead to biased
measurements due to the time increment for the signals to
penetrate through obstructions or travel a longer non-direct
path [11], [12]. It is also observed that the line-of-sight (LoS)
UWB range measurements exhibit spatially varying bias due
to the relative pose and orientation between UWB sensors [13]
and their antenna radiation patterns [14]. Therefore, to ensure
UWB localization accuracy, it is critical to account for the
bias in the UWB range measurements before using them.
Bias correction/compensation in the UWB ranging is not fully
resolved and is an active area of research.

NLoS UWB ranging bias is often significant. To deal with
UWB NLoS bias, some localization approaches rely on iden-
tifying NLoS signals and avoid using them for ranging [15]–
[18].

However, excluding NLoS range measurements means that
in complex and cluttered indoor environments where most of
the measurements are obtained in the NLoS cases, we should
deploy a large number of beacon transceivers to increase
the probability of taking LoS measurements if we want to
implement the LoS-only UWB ranging. Still, NLoS scenarios
may not be fully avoidable because of mobile obstacles in the
environment, such as pedestrians.

There are mainly two approaches in the literature to handle
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Fig. 1 – The diagram of our learning-based UWB LoS and NLoS
classification and bias correction method. PM: Power Metric, FPPL:
First Path Power Level, RSS: Received Signal Strength, LaNANN:
Line-of-sight and Non-line-of-sight artificial neural network, NLoS:
Non-line-of-sight, LBCANN: Line-of-sight bias compensation artifi-
cial neural network, LaNANN: Non-line-of-sight bias compensation
artificial neural network.

the bias in UWB range measurements. The first one is the
model-based bias correction, where the bias is either modeled
with a known analytical expression [19]–[21] or considered
as a parameter in the state vector to be jointly estimated
with other state parameters [22]–[26]. In practice, however, the
prior information about the bias may not be available accu-
rately beforehand. The second approach is the model-free bias
correction using ML techniques. The main idea is using ML
methods, e.g., support vector machine (SVM) [27], k-nearest
neighbor (k-NN) [28], deep neural network (DNN) [29] for
LoS and NLoS classification and to learn the bias in NLoS
scenarios.The corresponding features for classification and
learning the bias include the channel impulse responses, the
energy of the received signal, the maximum amplitude of
the received signal, and the mean excess delay. However, the
channel impulse response features are not readily available
in low-cost UWB devices [30]. Moreover, complex learning
models with large number of features also come with high
computational complexity, which may limit use of this models
in the embedded systems. A lightweight learning method to
estimate the UWB ranging bias in NLoS was proposed in [31].
But this method uses the relative pose as a feature input to
ML, which may not easily be available in every localization
application. The method in [31] in fact is proposed for UWB
time difference of arrival (TDOA)-based localization which
involves three UWB radios instead of two, which is used in
the ToF-based localization applications.

In this paper, we propose a novel bias correction framework
for both LoS and NLoS UWB ranging via low-cost UWB
transceivers. Our method, is depicted in Fig. 1. The novel
features we use in our ML-based framework are the first path
power level (FPPL), the received signal strength (RSS), the
power metric (PM), and the raw range measurement, which
are readily available on low-cost UWB transceivers such as
the popular DWM1000 developed by DecaWave [32]; see
Section III-A for more details. Recognizing that the nature

of the bias generation in the LoS and the NLoS modes are
different, we take a two-step approach to our bias correction.
First, we use an artificial neural network (ANN), referred to
as LaNANN (short for LoS and NLoS ANN), to discriminate
the LoS and NLoS measurements. Then, we use a set of
two ANNs, LoS bias correction ANN (LBCANN), and NLoS
bias correction ANN (NBCANN), to learn the bias-free ranges
out of the uncorrected UWB range measurements under LoS
and NLoS conditions, respectively. We adopt ANN as our
learning model because the universal approximation theorem
claims that an ANN with enough depth can approximate any
continuous function given certain weights. In other words, we
can approximate the complex unknown UWB bias model using
the ANN and minimize the size of the ANN to reduce the
computational complexity in the mean time. A key feature
of our approach is that it is computationally efficient enough
to run on a resource-constrained hardware such as small
embedded devices as demonstrated in our experimental study.

In most of the existing supervised learning-based bias
compensation/correction work such as [33], [34], the ranging
bias value acquisition is often assumed trivial and is usually
obtained by measuring the ground truth distance between
UWB sensors with the tape ruler or the laser tracker and
computing the difference between the measured true range and
the UWB range measurement. The accuracy of the measured
true range directly affects the learning performance. Measuring
the true range (ground truth) between UWB sensors by a
human can introduce extra errors. The training data for the
ML algorithms also often are obtained from stationary sensors.
However, in real localization applications, the UWB sensors
attached to the targets are maneuvering, which induces po-
tential data mismatch issues due to the additional bias caused
by the relative pose of UWB sensors. The relative pose and
the antenna radiation patterns of UWB sensors is not often
considered in the literature only until some recent work [31],
[35]. Even so, these work require bias modeling with respect
to the relative pose of the UWB sensors or the access to the
relative pose when learning and predicting the bias. And they
can only deal with pose-dependent bias due to the limited
feature selection. The NLoS scenarios are not included either.
In this paper, to collect the training data in both LoS and NLoS
conditions, and in a diverse set of relative pose conditions,
we use the OptiTrack real-time motion capture system; see
Section III-B for details. High precision motion capture camera
system [36]–[38] most often are used for engineering purposes
such as human gait analysis [39], [40]. The use of this system
for applications using UWB ranging is reported in [31] for
UWB bias estimation in LoS and in [41] to generate aiding
measurements to improve localization of an integrated inertial
measurement unit (IMU)/UWB system. In this paper, the
motion capture system is used only for training data generation
and validating localization performance purposes. Thus, we
call our bias correction framework for both LoS and NLoS
UWB ranging the OptiTrack aided learning-based UWB bias
correction (OLUC).

The rest of the paper is organized as follows. Section II
introduces the UWB ranging model. Section III gives the
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detail account of our bias correction method depicted in
Fig. 1. Finally, Section IV demonstrates the effectiveness of
the proposed framework and compares it with the state-of-
the-art techniques via a set of UWB pedestrian localization
experiments.

II. PROBLEM SETTING

Consider a group of N anchor UWB nodes located at known
positions {A1, A2, · · ·AN} ∈ R3. There is one moving agent
with an UWB tag, whose location is denoted by PTag ∈ R3.
This agent can communicate with each of the N anchors and
compute the corresponding ToF ranges. The measured range
with respect to each anchor consists of the actual distance, the
measurement noise, and a bias. Thus, the range measurement
zn between the UWB tag and the n-th anchor is computed as
follows

zn=∥An − PTag∥2 + ω + bn, (1)

where ∥.∥2 is the Euclidean distance, ω is the zero mean white
Gaussian noise and

bn =

{
bLoS
n , LoS
bNLoS
n , NLoS

, n = 1, 2, · · · , N (2)

is the measurement bias whose value differs in the LoS bias
and NLoS ranging conditions. The LoS bias exhibits the joint
impact of multi-path, relative orientation, and actual distance,
while the NLoS bias corresponds to the LoS bias together with
the range measurement increment due to the NLoS additional
transmission time. The state estimation update rule in terms
of the recursive least square (RLS) estimator [42] of the tag
location P̂ k

Tag when the range zkn between the UWB tag and
the n-th anchor is obtained at timestamp k is shown as follow:

P̂ k
Tag = P̂ k−1

Tag +Kk(zkn − ẑkn), (3)

where Kk is the estimator gain matrix, ẑn = ∥An − P̂ k−1
Tag ∥2

is the predicted range measurement. Given the biased range
measurement model in (1), the estimation error ek of the RLS
estimator at time k is obtained as

ek = P k
Tag − P̂ k

Tag = (I−KkHk)ek−1 −Kk(bn + ω), (4)

where I is the identity matrix and Hk =
∂∥An−PTag∥2

∂PTag
|PTag=P̂k−1

Tag
. And the location estimation covariance

matrix Σk at time k is

Σk = (I−KkH)Σk−1. (5)

As we can infer from (4) and (5), even though the bias bn does
not directly affect the covariance Σk, it aggravates the location
estimation error ek instantly. In fact, the bias is ubiquitous
in real data. Ignoring the bias mismatches the reality under
both Los and NLoS UWB ranging, which leads to inconsistent
estimation results. Figure 2 shows the result of an experiment
study that compares the raw UWB range measurements with
the true distance between UWB sensors. As it can be inferred
from Fig. 2, NLoS bias is more significant than the LoS bias
in terms of magnitude, while LoS bias cannot be neglected

NLoS

LoS

Fig. 2 – The raw UWB range measurements collected at different
true distances within 10 m in LoS and NLoS conditions. The
measurements are collect by DecaWave DWM1000 UWB sensors
described in Section III-B. The red dash-line, regarded as the ”ground
truth”, represents the ideal raw range measurement of the UWB
without any error.

for accurate ranging. A similar observation is reported in our
previous work [13] for UWB foot-to-foot ranging where the
magnitude of LoS bias is considerable, which motivates us to
take LoS bias correction into account for UWB-aided pedes-
trian localization. The objective of this work is to improve the
UWB localization accuracy by determining the LoS and NLoS
scenarios and consequently correcting the corresponding bias
to generate accurate UWB range measurements using ML
techniques.

III. LEARNING-BASED UWB LOS AND NLOS
CLASSIFICATION AND BIAS CORRECTION

This section gives a detailed account of our learning-based
bias correction method depicted in Fig. 1.

A. Feature Analysis and Selection

We focus on designing a bias correction method that can
be used with low-cost UWB transceivers. In this study, we
use the popular UWB transceiver DWM1000 developed by
DecaWave [32] whose data acquisition and ranging software
runs on a Teensy 3.2 as shown in the right hand side of
Fig. 3. The Teensy 3.2 microcontroller implements a serial
peripheral interface protocol to communicate with the UWB
and collect sensor measurements [43]. To pick the features for
measurement classification and correction, we constrained the
choice to the signals that are readily available on this UWB
ranging sensor.

We guide our study by the existing results in the literature.
To distinguish NLoS UWB measurements from LoS ones,
[44] employs a PM-based ranging mode discriminator with
a deterministic threshold. The motivation for this choice is
that in the LoS condition, the received direct-path signal’s
power takes a big proportion of the total received signal
power. In contrast, in NLoS conditions, the direct path is
significantly attenuated or even completely blocked. When
the difference between total received power and the direct-
path power is larger than a threshold value, [44] argues
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Fig. 3 – The screenshot of tracking the DecaWave DWM1000 UWB
sensor attached with reflective markers in the Motive software.

NLoS

LoS

Fig. 4 – The power metric of UWB measurements collected at
different distances within 10 m in LoS and NLoS respectively. The
red line denotes the deterministic threshold to discriminate LoS and
NLoS proposed by [44].

Fig. 5 – The 3-D plot of UWB measurements when true distance
between the sensors is 7 m.

that the range measurement can be identified as NLoS. To
investigate effectiveness of this feature, we carried out an
experimental study at different distances between two UWB
sensors under a controlled environment where we know the
true measurement scenarios. The results shown in Fig. 4,
however indicates that the deterministic threshold represented
by the red line cannot completely separate LoS and NLoS
measurements, and there is still significant overlapping PM
values. By collecting experimental data under various NLoS
and LoS ranging condition, in addition to the PM we also
included the FPPL and RSS of UWB signals and the raw range

Range

RSS

Input

FPPL

PM
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Node4

…

PNLoS

Hidden Layers
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Output

Fig. 6 – The ANN model for UWB LoS and NLoS Classification.
The NN structure for learning the range bias looks similar except that
at the output layer we have a single neuron for the bias-free range.

measurements as features. For a fixed distance, e.g., 7 m, the
3-D visualization of the UWB measurements under controlled
data collection is shown in Fig. 5. As it can be seen in this
plot, using these features the LoS and NLoS measurements
are more clearly separated from one an other. As we discussed
earlier, the relative pose of the transceivers can also effect the
ranging bias and thus recent work like [31] considered relative
bias as an input feature. However, since obtaining the relative
pose is not straightforward and needs additional to the bias
correction, because the relative pose is hard to obtain without
additional sensors, we did not consider it as a direct feature.
However, as our evaluation study for localizing a moving
pedestrian in Section IV show our bias correction method
delivers high accuracy results despite the varying relative of
the transceivers due to the movement. This can be due to the
use of a diverse training data that we collect at various relative
poses, which provides the opportunity learning of the relative
pose-dependent bias implicitly by using signal patterns that
can be reflected in FPPL and RSS.

Figure 6 depicts the LaNANN component of our method
that is used to classify measurement type. It uses 4 nodes in the
input layer corresponding to the UWB measurements of range,
RSS, FPPL, and PM while the output layer has 2 nodes for
the LoS and NLoS probability, respectively. We use the same
input for the two ANNs of LoS and NLoS bias correction in
parallel, but their output layers only have 1 node of the bias-
free UWB range. In general, the LoS and NLoS scenarios of
the UWB measurement can be modeled as a random variable θ
with a Bernoulli distribution mathematically whose probability
mass function is as follow

f(θ; p) =

{
p, if θ = LoS
1− p, if θ = NLoS

(6)

The probability of LoS p, as well as the bias-free range z̃n =
∥An −PTag∥2 + ω, based on our selection of the features, are
functions of range, RSS, FPPL and PM, respectively.

p = fLaN(range,RSS,FPPL,PM), (7a)
z̃n = fBC(range,RSS,FPPL,PM). (7b)

Then our objective boils down to use ANNs to approximate
these functions without explicitly know the exact mathematical
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Fig. 7 – The OptiTrack motion capture system in KCS lab at
University of California Irvine. The cameras have 1280 × 1024

resolution with a 120 Hz native frame rate.

relations.

p̂ = f̂LaNANN(range,RSS,FPPL,PM), (8a)

ˆ̃zn =

{
f̂LBCANN(range,RSS,FPPL,PM), if p̂ ≥ 0.5

f̂NBCANN(range,RSS,FPPL,PM), if p̂ < 0.5
.

(8b)

where f̂LaNANN, f̂LBCANN and f̂NBCANN denotes the generic
functions of the feed-forward LaNANN, LBCANN and
NBCANN respectively.

B. OptiTrack-aided Training Data Generation

Generating the training data of ANNs for LoS and NLoS
classification and the corresponding bias correction is not
a trivial task. Traditionally, the UWB sensors are placed
statically at known locations where the actual reference range
between UWB sensors can be measured or calculated. The ac-
curacy of the reference range highly depends on the precision
of the location and the measurements. The success of ML-
based methods depends on extensive and informative training
data generation, otherwise, the out-of-sample performance
cannot be guaranteed due to the distributional mismatch. UWB
ranging is often is used for moving target localization. Using
data generated in stationary configurations lacks diversity of
relative pose that is often the case when we track a moving
object. As we mentioned in Section III-A, we proposed to
incorporate the relative pose implicitly in the measurements,
therefore, we have to make our training data set contain
as many relative-poses as possible. Collecting training data
manually at various relative-poses is not feasible since there
are infinite amount of relative-poses. Therefore, to obtain more
abundant training data and reduce the difference between the
training and the test data set, we use the OptiTrack motion
capture camera system to obtain an accurate bias-free range
in a dynamical manner.

The OptiTrack system is a precise motion capture and 3-D
tracking system with a localization error of less than 0.2 mm
via optical ranging and trilateration for numerous applications,
e.g., video game design, virtual reality, and robotics. The
OptiTrack system in our KCS lab is shown in Fig. 7. The
cameras can precisely perceive the particular reflective mark-
ers’ location via visual-based ranging techniques. As such, we
attach at least 3 reflective markers on the UWB sensors so that

they form a rigid body that can be recognized and tracked by
the OptiTrack system as shown in Fig. 3 which exhibits the
track of a UWB sensor in the associated OptiTrack software
called Motive.

The pivot point of the UWB rigid body defined by the
reflective markers can be manually assigned and tracked.
Consequently, we can obtain the accurate position of the
UWB sensors by setting their antennas as the pivot points
and then calculate explicitly the distances between the pivot
points as the label values, i.e., bias-free ranges, for the ANN
model. The advantage of this approach to measure the actual
distances is that the UWB sensors are not necessarily fixed at
certain locations. Instead, the UWB sensors can be attached
or carried by any moving objects or agents, while the UWB
sensors can provide their own measurements in the meantime
as the input features go into the ANN. To generate a diverse
and abundant training data set, in our study case, an agent
holding a Tag UWB sensor that connects to three anchor
UWB sensors randomly walks under the OptiTrack systems
in the LoS condition in our KCS lab for 5 minutes. The agent
also waves the Tag UWB in the air to make different relative
poses and collects various measurements to the full extent that
contains biased ones caused by other factors illustrated before.
All collected data are labeled by LoS. For NLoS cases, we put
various obstacles found in our lab space between the Tag and
the anchors and repeat the same data collection procedure as in
LoS. The OptiTrack-aided training data generation experiment
is illustrated in Fig. 8. One assumption made here is that the
effect of the UWB relative pose, NLoS and multi-path on
the range bias is encoded intangibly in the power features
of the UWB signals, i.e., PM, FPPL, and RSS, that can be
learned by the ANN model. In conclusion, by collecting data
in such a dynamical setting, we can enrich the training data set
without collecting the relative pose data explicitly and reduce
the distributional difference between the training data and the
test data to a considerable extent.

C. Training Result

The UWB device we used to generate the training data is
DecaWave DWM1000 and the sampling rate was set to 10
Hz. We generated 300000, 150000, and 150000 samples of
the UWB range, PM, FPPL, RSS, and bias-free range for the
LaNANN, LBCANN, and NBCANN, respectively, via agent
random walks conducted in the KCS lab at UC, Irvine. The
samples are split into a training set, a validation set and a
test set according to the ratio of 70%, 15%, and 15%. For the
LaNANN, the label is LoS (0) and NLoS (1), while that of
LBCANN and NBCANN is the bias-free range. We used the
grid search method [45], [46] to tune the hyperparameters of
all ANNs during the training process. The fine-tuned design
of all three ANNs is shown in Table I.

In summary, the training results are shown in Table. II
where the best classification accuracy in test sets achieved by
LaNANN is 92.73%. Also, the root mean square error (RMSE)
for the test set for LBCANN and NBCANN is 0.1351 m and
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Fig. 8 – The OptiTrack-aided training data generation experiment
where the agent holding a Tag UWB sensor walks along a random
trajectory. The reference position of all UWB sensors are obtained
by the OptiTrack. The blue line denotes the trajectory of the Tag
UWB while the red crosses represent the anchors. For NLoS data
collection, multiple obstacles such as wooden boards (shown as the
orange rectangles) and human body are placed to block the direct
path between the Tag and anchors.

Hyperparameters LaNANN LBCANN NBCANN
Number of hidden layers 2 3 3
Number of units per layer 10 11 18
Loss Cross-Entropy MSE MSE
Activation function Sigmoid ReLU ReLU
Optimizer Adam Adam Adam
Batch size 256 512 512
Learning rate 0.05 0.025 0.025

TABLE I – The hyperparameter design of the ANNs.

Training Validation Test
LaNANN (Accuracy: %) 94.39 94.12 92.73
LBCANN (RMSE: m) 0.1308 0.1316 0.1351
NBCANN (RMSE: m) 0.1557 0.1563 0.1662

TABLE II – The summary of training result for all ANNs.

0.1662 m, respectively. As for the computational perspective,
the training period took around 2 hour in total while the
prediction run time for LaNANN, LBCANN and NBCANN
is 0.0022 ms, 0.0029 ms and 0.0041 ms using a Dell Laptop:
Intel CoreTM i5-1135G7@4.20GHz, quad-core, 8 GB memory.

IV. EXPERIMENTAL EVALUATIONS

To verify the effectiveness of our ANNs for UWB bias cor-
rection, we implemented our model, which was well-trained
using the data in Section III-B in another set of localization

experiments conducted in the Public Safety Immersive Test
Center (PSITC), a collaboration between the First Responder
Network Authority and the National Institute of Standards
and Technology’s Public Safety Communications Research
Division, located in Boulder, CO. One agent with a Tag
UWB sensor walked along three different trajectories, i.e.,
straight lines, rectangles, and lemniscates (Figure-8 shape),
for around 5 minutes, as depicted in Fig. 9. Each trajectory
was repeated three times. Three additional UWB anchors are
placed at known locations maintaining the communication
with the Tag. Due to the block of human bodies, roadblocks
and walls in the testing venue, the measurement scenarios were
constantly switching between Los and NLoS. We used the
OptiTrack system installed in the PSITC facility to provide
high-accuracy reference trajectories for comparison. Note that
the reference trajectories were used for the evaluation of our
bias correction method rather than training any new model.
During the experimental evaluations, we made an inductive
bias to the ANNs that for the consecutive predictions given
by the ANNs cannot abruptly change within a small time
period since the actual ranges between the Tag and anchors are
continuous and the LoS and NLoS switching is less frequent.
We put some weight on the previous prediction so that during
real-time implementation the predicted bias-free range by the
ANNs is smoothed, which is equivalent to the moving average
method in terms of the format. Additionally, we selected the
RLS method for the location estimation of the agent and
removed the faulty measurements (extreme values).

For comparison study, we also trained another ANN set
using the same features but using a data set that was col-
lected in limited number of stationary configurations and the
true distances were measured by human using measuring
tape. We compared our proposed OLUC method with this
so-called ”stationary-ANN” method. We also compared the
effectiveness of our bias correction method for localization
with the OptiTrack aided method proposed in [41] which
uses an ANN method to fuse IMU/UWB based localization
with Optitrack measurements to improve localization accuracy.
We called this method “ANN fusion”. And we trained and
evaluated its ANN based on the same trajectories according
to [41] to make a fair comparison with our proposed method.
The experimental results are shown in Fig. 10 and Fig. 11.
Lastly, in order to test the generalization of our proposed
method against the “ANN fusion” on unseen new data, we
additionally conducted a set of localization experiments in the
CALIT2 building at UC Irvine, where the OptiTrack is not
available and the LoS/NLoS conditions are more complicate
due to the cubicles in the environments as shown in Fig. 12.
The experimental settings other than the designed trajectory
remained the same as previous ones. Note that in this extra
experiment, we tested the fusion ANN via a new trajectory on
which it was not trained. Fig. 13 and Table III illustrate the
additional comparison results. We used the loop-closure error
for the mobile UWB tag instead of the RMSE since its start
and end point are identical and the reference is less accurate.

As it can be directly seen from the estimated agent’s
trajectories in Fig. 10, after applying our proposed OLUC
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Fig. 9 – The demonstration experiments conducted in the PSITC
facility associated with the bottom diagram that shows the designed
trajectories of the mobile UWB tag, the positions of the anchors, and
of the obstacle roadblocks.

Raw Proposed ANN Fusion
Loop-Closure Error (m) 0.8046 0.2643 1.5020

TABLE III – The loop-closure error of the trajectory using the
proposed method versus the ANN fusion.

method to correct UWB range bias in LoS and NLoS hy-
brid environment, the localization accuracy of the moving
agent using the RLS method is significantly improved. The
error plots, as well as the performance metrics in Fig. 11,
demonstrate that our OLUC method achieved substantial bias
reduction rates of 66.91%, 64.66%, and 63.13%, in the three
scenarios that we considered. Note that the stationary ANN
has an inferior performance due to the out-of-sample problem
that we discussed earlier. As for the ANN Fusion method
in [41], it has similar performance as our proposed OLUC.
However, it works only when the OptiTrack is available or
the training and the evaluation trajectories are the same.
Because it necessarily needs to train the ANN based on the
estimated position obtained by both the UWB sensors and
the OptiTrack rather than the UWB signal, which makes the
generalization performance not satisfactory. We can obtain
above conclusion from both Fig. 13 showing the trajectories
and Table III comparing the loop-closure errors as they show
that the ANN fusion performs even worse than using the
raw measurements. But our proposed method still performed
well. Therefore, the ANN Fusion method is only a position
enhancement using and highly dependent on the OptiTrack
and has limitation in generalization. If the OptiTrack is not

available and the designed trajectory is not seen by the ANN,
it fails easily. On the contrary, our proposed OLUC does not
highly rely on the OptiTrack, since we only used the OptiTrack
to generate training data. The evaluation using the OptiTrack
is not a necessity.

V. CONCLUSIONS

UWB ranging bias correction has a significant impact on
localization accuracy of the navigation algorithms that use
UWB ranging. In this paper, we addressed the problem of
UWB ranging bias correction in complex localization scenar-
ios by training neural network models to distinguish LoS and
NLoS scenarios and predict the corresponding bias-free range
in real-time using features that are readily available on low-
cost UWB sensor. Our experimental data collection resulted in
identifying a novel set of features, raw range, PM, FPPL and
RSS, to train ANNs for measurement type classification and
bias-free range prediction. The effectiveness of any learning-
based solution depends on diversity and informativeness of
its training data. Recognizing that the relative orientation
of ranging sensor affects the ranging accuracy, we used an
Optitrack motion capture system to collect high accuracy
ranging between a tag on a moving agent and fixed UWB
anchor nodes. In doing so, we collected a diverse set of data
in various relative poses between the sensors. The effectiveness
of our OptiTrack-aided supervised learning-based UWB bias
correction method was demonstrated via a set of pedestrian
localization experiments using the RLS algorithm for location
estimation. Our experiments showed that our method leads to
a considerable improvement in the localization accuracy.
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tive gait analysis of parameters of the knee joint after CR and PS
implantations,” in 2022 11th Mediterranean Conference on Embedded
Computing, pp. 1–4, 2022.

[41] A. M. Almassri, N. Shirasawa, A. Purev, K. Uehara, W. Oshiumi,
S. Mishima, and H. Wagatsuma, “Artificial neural network approach
to guarantee the positioning accuracy of moving robots by using the
integration of IMU/UWB with motion capture system data fusion,”
Sensors, vol. 22, no. 15, p. 5737, 2022.

[42] Y. Bar-Shalom, X. Li, and T. Kirubarajan, Estimation with applications
to tracking and navigation: theory algorithms and software. John Wiley
& Sons, 2004.

[43] P. Stoffregen, “Teensy 3.2 datasheet.” https://www.pjrc.com/
teensy/techspecs.html, 2016. Accessed: March 17, 2023.

[44] K. Gururaj, A. K. Rajendra, Y. Song, C. L. Law, and G. Cai, “Real-
time identification of NLoS range measurements for enhanced UWB
localization,” in International Conference on Indoor Positioning and
Indoor Navigation, pp. 1–7, 2017.

[45] J.-M. Dufour and J. Neves, “Finite-sample inference and nonstandard
asymptotics with Monte Carlo tests and R,” in Handbook of statistics,
vol. 41, pp. 3–31, Elsevier, 2019.

[46] R. Khalid and N. Javaid, “A survey on hyperparameters optimization
algorithms of forecasting models in smart grid,” Sustainable Cities and
Society, vol. 61, p. 102275, 2020.

https://www.pjrc.com/teensy/techspecs.html
https://www.pjrc.com/teensy/techspecs.html

	Introduction
	Problem Setting
	Learning-based UWB LoS and NLoS Classification and Bias Correction
	Feature Analysis and Selection
	OptiTrack-aided Training Data Generation
	Training Result

	Experimental evaluations
	Conclusions
	References

