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ABSTRACT
In this paper, a residual-based fault detection and exclusion (FDE) algorithm is developed to enhance the performance of
tightly coupled Global Navigation Satellite System (GNSS) and Inertial Navigation System (INS) system. Specifically, Rényi
divergence (RD) is introduced as a measure to evaluate the distance/divergence between the state estimate of propagation and
update steps to indicate whether there exists a fault in the system. The properties of this indicator mechanism are discussed
analytically in details. A FDE algorithm is constructed based on this divergence measure. Appropriate methods to select the
parameters of the proposed divergence measure to increase the probability of the fault detection and decrease the false alarm
rate of the FDE algorithm are proposed. The results are demonstrated and validated in the Computer Aided Design of Aerospace
Concepts (CADAC++) flight simulation platform.

I. INTRODUCTION

In Global Navigation Satellite System (GNSS), the measurements from the satellites (pseudorange, Doppler) can be obscured
or degraded due to different phenomena such as the multipath and ionosphere interference. To ensure the continuity and the
integrity of localization, it is necessary and critical to detect and exclude these erroneous measurements before fusing GNSS
data with Inertial Navigation System (INS) for localization. Integrity monitoring of multi-sensor navigation systems has been
pursued and enhanced for decades, contributing to a rapid growth in the research on the subject of Fault Detection and Isolation
(FDI) or Fault Detection and Exclusion (FDE).

The leading workhorse of model-based FDE in the literature has been the residual-based detectors, where the residual is the
difference between the actual output (measurement) acquired by the sensors and the estimated or predicted output obtained by
the observer. These techniques calculate certain statistics of the residual and compare the statistics with a predefined threshold
as an indicator to declare a fault. The conventional methods for integrity monitoring such as Receiver Autonomous Integrity
Monitoring (RAIM) [1] and Pseudorange Comparison methods [2] have been widely adopted but still have some limitations.



One such limitation is that they can only deal with single-fault case, i.e., the detection of one fault at one time without exclusion.
For these methods, by merely receiving the information that the pre-designed threshold is exceeded, one cannot distinguish
between the single-fault case and the multiple-faults case. Also, these methods are batch processing methods that have strong
dependency on the history so that they have limited capability to deal with incipient faults (faults with small magnitude and
increasing slowly). The state estimation collapses if the faults are not detected. The performance of the traditional FDE methods
has been enhanced in different settings.

Advanced RAIM (ARAIM) is introduced in [3] which utilizes multi-constellation and multi-frequency GNSS. [4] demonstrates
some opportunities to combine filtering to enhance the performance of a chi-square detector and leverage the frequency content
of the residual signal in making the detection problem easier with noise. [5]- [7] focus on the FDI for distributed systems by
leveraging the communications between the agents. In cooperative settings, [8] developed a cooperative integrity monitoring
(CIM) algorithm using decomposition method to isolate the fault. Information techniques have been applied and improved for
FDE, which is a quite success. [9] minimizes integrity risk for RAIM detector. And a more systematic analysis of information
theoretic approach to detection problem can be found in [10]. [11]- [13] carries out the FDE scheme for tightly coupled
systems with the use of information entropy and divergence as mutual information, Kullback-Leibler divergence (KLD) and
Rényi Divergence (RD) for the synthesis of detection residuals. The scheme is based on the local test (LT) and global test
(GT) with optimal thresholding which can isolate multiple faults and exclude them recursively. [14] and [15] apply KLD for
FDE in a data-driven framework, which is not the main research area for this paper.

In this work, an information theoretic based FDE method for tightly coupled GNSS/INS system is developed which can deal
with multiple-faults case with fast alarm ability and less iterations. This method uses a modified form of the so-called Rényi
Divergence (referred to as MRD) to monitor how much the propagated state estimate’s probability distribution changes after it
gets updated with the satellite pseudorange measurements. The faults are detected when the MRD value is beyond a threshold.
Also, the concept of individual MRD is proposed to isolate the faulty channel and exclude the erroneous measurements.
Furthermore, a ratio test based on the individual MRDs is designed to improve the ability of detecting incipient faults and at
the same time separate the abnormal MRD jump caused by the abrupt change in system dynamics and the one associated with
faults, which helps with decreasing the false alarm rate. Lastly, the selection of α, the parameter of the divergence measure for
MRD is discussed in detail. The results are demonstrated via an extensive set of simulation study in the 6 degree-of-freedom
(6-DoF) CADAC++ environment [17], which is a high-fidelity flight simulator used by industry and the U.S. Air Force to
simulate aerospace vehicles in all flight environments.

II. PRELIMINARIES

Given two continuous probability density functions p(x) and q(x), x ∈ X, the KLD is defined as KLD
(
p(x)||q(x)

)
=∫

x∈X p(x) ln p(x)
q(x)dx. KLD is a measure of similarity (dissimilarity) between two probability distributions; smaller values

indicate more similarity. KLD is zero if and only if the two distributions are identical. For two n-dimensional Gaussian
distributions, p(x) = N (µ0,Σ0) and q(x) = N (µ1,Σ1), the KLD has a closed form expression [16]

KLD
(
p(x)||q(x)

)
=

1

2

(
(µ0 − µ1)>Σ−11 (µ0 − µ1) + ln

|Σ1|
|Σ0|

+ det(Σ−11 Σ0)− n
)
, (1)

where {µk}k∈{0,1} and {Σk}k∈{0,1} are the means and the covariance matrices of the two Gaussian distributions, respectively.

Given two probability density functions p(x) and q(x)), the RD is defined as RD(p(x)||q(x)) = 1
α−1 log

∫
p(x)αq(x)1−αdx,

where α ∈ R+\{1}. For two n-dimensional Gaussian distributions, p(x) = N (µ0,Σ0) and q(x) = N (µ1,Σ1) the RD has
the close form expression [16]

RD
(
p(x)||q(x)

)
=

1

2

(
α(µ0 − µ1)>Σ∗α

−1(µ0 − µ1)− 1

α− 1
ln

|Σ∗α|
|Σ0|1−α|Σ1|α

)
, (2)

where Σ∗α = αΣ1 + (1 − α) Σ0 > 0 Similarly, RD is zero if and only if the two distribution are identical. Note that when
α→ 1, RD becomes KLD. In this paper, α is chosen as α ∈ (0, 1) in order to make Σ∗α positive definite.

A. A brief overview of CADAC++ tightly coupled GNSS/INS model

CADAC++ framework is a high-fidelity flight simulator to simulate aerospace vehicles in all flight environments, which is
written in C++. It creates the 6-DoF motion model for different types of vehicles (aircraft, rocket booster, missiles, satellites
or ground targets), and provides also a tightly coupled INS/GNSS navigation system model; for an overview of CADAC++
see [17]. In this paper, we use the ROCKET6G package of CADAC++ as the simulation platform for our study. The full



description of this package’s modeling equations is available in [18]. This package simulates a three-stage solid rocket booster
inserting a 1000 kg payload into low earth orbit. The default simulation time is set to 400 seconds. The booster consists of
three configurations with different aerodynamics: the full-up rocket at launch, the shape after the first stage is jettisoned, and
the last stage with its payload. During the first stage, a pitch program is executed while maintaining small incidence angles in
the high dynamic pressure region. Stages two and three are under ascent guidance to meet the terminal insertion conditions.
This guidance law implements linear tangent guidance for minimum fuel consumption. The onboard INS, updated by the global
precision system (GPS), provides the navigation states of the booster. The time period of the three stages and the corresponding
dynamical information is shown in Fig. 1. In what follows, we review briefly the ROCKET6G package’s GPS and INS models
parameters as given in [18]. Notice the great variation in the thrust levels for the three stages and the brief coast periods during
the separation; the rapid decrease in mass during Stage I and the complete exhaustion of the fuel in Stage III at insertion.

Fig. 1 – Rocket booster ascent trajectory: a typical trajectory is launched and places a payload at the suborbital conditions of 110 km
altitude, 1.5 degrees flight path angle and 6600, m/s inertial speed [18].

1) GPS Model: In CADAC++’s GPS module, the code-tracking loop measures the distance to the i-th satellite |ρSiU |
(pseudorange), while incurring range bias error ∆Ri, receiver bias and multi-path error ∆Ni, and user clock bias error
b.

|ρ̂SiU | = |ρSiU |+ ∆Ri + ∆Ni + b.

The range bias error ∆Ri consists of the imprecise location of the satellite (called ephemeris error) and the transmission error
of the RF signal through space, caused by deflections and delays through the ionosphere (50 to 500 km) and the atmosphere
(sea level to 50 km). Receiver bias ∆Ni depends on the quality of the receiver design, which is a cost issue. The user clock
bias b is also a cost issue. For unit consistency, both biases are expressed in meters;i.e., multiplied by the speed of light. In
the ROCKET6G simulation, the biases for ∆Ri and ∆Ni are drawn from Gaussian distributions at the beginning of the run
and combined into one total bias. A higher quality GPS receiver also measure the Doppler of the four carrier frequencies,
called carrier phase tracking. It measures the time-rate-of-change of the distances to the four satellites, which are referred to
as delta-ranges. The carrier-phase tracking loop measures the range-rate d|ρSiU |

dt between the user and the i-th satellite. Besides
the movements of the satellites, it also accounts for the dynamics of the user. These four additional measurements improve the
filter’s performance. The measurement errors consist of the receiver dynamic noise ∆Ṅi and the user clock frequency error f .

d|ρ̂SiU |
dt

=
d|ρSiU |
dt

+ ∆Ṅi + f.

A high quality receiver exhibits small dynamic noise with a one-sigma values 0.03 m/s and the clock frequency error of 0.1
m/s. Several simulation in CADAC++ reveals that the average smallest magnitude of the total noise (sum of all the biases
above) is around 1.6 m while the largest one is around 4.8 m. Also, the INS model in ROCKET6G is imperfect, which has
some noise in the system. This result is considered as the noise range of the measurement model which restricts the precision
and accuracy of our FDE algorithm since the faults within the noise range are impossible to be distinguished from the noise.
That is also the reason that the minimum fault is restrained to be greater than 5 meters.



Fig. 2 – Tightly coupled GNSS/INS implementation [18].

2) INS Model: The fundamental equations of navigation are shown as follows:

[
dvIB
dt

]I = [T̄ ]BI [fsp]
B + [g]I ,

[
dsBI
dt

]I = [vIB ]I .

It calculate, based on Newton’s law, the velocity of the vehicle’s c.m. wrt the inertial frame in inertial coordinates [vIB ]I , and
its position wrt an inertial reference point I , [sBI ]

I , in inertial coordinates, where [fsp]
B , the specific force is measured by

the accelerometers, and [g]I is the gravitational acceleration in inertial coordinates. The accelerometers may be mounted on
the vehicle or on a platform. In either case, ]B stands for the coordinate system associated with that frame. The integration
of the gyro’s angular velocity of the vehicle wrt the inertial frame, expressed in inertial coordinates, [ωBI ]I delivers, after
integration, the rotation tensor of the body frame B wrt the inertial frame I , [RBI ]I , which is equal to the transpose of the
transformation matrix [RBI ]I = [T̄ ]BI of body coordinates B wrt inertial coordinates I . Starting with the acceleration [fsp]

B

and angular rate [ωBI ]B measurements, the transformed specific force [aIB ]I , combined with the gravitational acceleration, is
integrated twice to attain the vehicle’s position. Also, the INS measurements are corrupted by the instrument errors.

With all the measurements modeled in realistic uncertainties, filtering is applied to extract the best information for navigation.

3) Tightly Coupled GNSS/INS Implementation: GPS and INS complement each other in providing navigation information to
the user. GPS keeps the low frequency errors small, while INS smooths the high frequencies [17]. The Kalman Filter is the
bridge between both. It filters the GPS measurements and updates the INS periodically. If the GPS signal drops out, the INS
carries on. The Kalman Filter also does a geometrical transformation from radial measurements to Cartesian inertial coordinates
which is nonlinear. Therefore, the filter used is Extended Kalman Filter (EKF). For computational benefits, Information Filter
(IF) is also commonly used. The tightly couple approach is more accurate, but also more elaborate which is shown in Fig. 2.
It processes eight measurements with a non-linear filter which can be unstable or even diverge due to the appearance of faults.

III. PROBLEM FORMULATION

In our study we use the CADAC++’s GNSS/INS model, which we briefly review below; for more details see [18]. Let x ∈ Rnx
be the state of the vehicle, where x = [ŝ1, ŝ2, ŝ3, v̂1, v̂2, v̂3, b̂, f̂ ]>. Here, ŝ = [ŝ1, ŝ2, ŝ3] is the position error and v̂ = [v̂1, v̂2, v̂3]
is the velocity error. b̂ is the user clock bias and f̂ is the user clock frequency error. The motion of the vehicle is described by

xk+1 = Fxk + Guk + νk, (3)

where uk is the user acceleration that drives the INS dynamics. νk is the process noise. The noises are assumed to be zero-
mean white Gaussian with invariant covariance matrices given by E[νkνk

>] = Qk = Q > 0. The fundamental matrix F and
control matrix G are

F=



0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 −1/Tf


, G=



0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1
0 0 0
0 0 0


,

where Tf is the correlation time constant.

The GPS measurement taken at time k is described by

zk = Hxk + ωk + fk, zk ∈ Rnz , (4)



where zk = [zk,1(1), · · · , zk,N (1), zk,1(2), · · · , zk,N (2)]> with

zk,i=

[
∆ρi,∆

d|ρi|
dt

]>
, i ∈ {1, · · · , N},

is the residual measurement vector of pseudorange and range-rate at GPS channel i. fk is the fault vector whose entries are
non-zero if and only if the corresponding measurement channels are faulty. The measurement noise ω is white and Gaussian
with predefined bias and invariant covariance matrix E[ωk ω

>
k ] = Rk = R > 0. The linearized observation matrix, which

should be computed every step, is CADAC++ simulation uses 4 GPS channels, therefore, in our simulation study N = 4.

H =



1 0
[uSB ]I4×3 O4×3 1 0

1 0
1 0
0 ∆τ
0 ∆τ

O4×3 ∆τ [uSB ]I4×3 0 ∆τ
0 ∆τ


,

where each column of matrix [uSB ]I4×3 is the unit vector pointing from the user B to the satellite S, expressed in the inertial
coordinates. ∆τ is the GPS update interval which is set to 1 second.

By use of the conventional EKF, the state estimation process is expressed as follow. The propagation equation is described by

x̂k|k−1 = Hx̂k−1|k−1 + Guk, (5a)

Pk|k−1 = FP̂k−1|k−1F
> + Qk. (5b)

The estimate is updated according to

x̂k|k = x̂k|k−1 + Kk (zk −Hx̂k|k−1), (6a)
Pk|k = (I−KkH)Pk|k−1, (6b)

where Kk is the Kalman gain, which can be obtained by

Kk = Pk|k−1H
>(HPk|k−1H

> + Rk)−1. (7)

The faulty measurements corrupt the updated state estimates by corrupting the innovation term (zk − Hx̂k|k−1) in (6a).
If the measurements are continuous and not faulty, the updated and propagated estimates (x̂k|k,Pk|k) and (x̂k|k−1,Pk|k−1)
respectively, are expected not to differ from one another significantly. We use the RD measure (2) to compute the difference
between the updated and the propagated estimate distributions f(x̂k|k−1|z1:k−1) and f(x̂k|kz1:k), which at each time step k
instantiate as

RD(f(x̂k|k−1|z1:k−1)||f(x̂k|kz1:k)) =
α

2
(x̂k|k− x̂k|k−1)>(P∗k|k)−1(x̂k|k− x̂k|k−1)− 1

2(α− 1)
ln

det(P∗k|k)

det(Pk|k−1)1−α det(Pk|k)α

=
α

2
(zk −Hx̂k|k−1)>K>k (P∗k|k)−1Kk(zk −Hx̂k|k−1)− 1

2(α− 1)
ln

det(P∗k|k)

det(Pk|k−1)1−α det(Pk|k)α
, (8)

where P∗k|k = αPk|k + (1 − α)Pk|k−1. The faulty measurements cause a significant deviation of the updated state and it is
expected that the RD measure (8) when measurements are faulty to be a large value. Our objective is in this paper is to monitor
the integrity of the tightly coupled INS/GPS to detect faulty GPS measurements by developing a RD-based FDE algorithm.
That is we apply RD as a measure of the deviation or distance between the propagated and updated estimates. Intuitively, the
distance of the two estimates should be within certain range while the outliers of the distance are regarded as faulty according
to some statistical criteria. In what follows, we carefully construct the statistical criteria that can be used for fast detection of
the GPS faulty measurements.

IV. A MODIFIED RÉNYI DIVERGENCE BASED FDE ALGORITHM

RD(f(x̂k|k−1|z1:k−1)||f(x̂k|kz1:k)) given by (8) provides a measure to compare the distribution of the updated and propagated
state estimate of the navigation filter for fault detection. However, careful inspection of (8) reveals that the existence or lack
of fault does not make any difference in the value of the second compound, 1

2(α−1) log
det(P∗k|k)

det(Pk|k−1)1−α det(Pk|k)α
, of (8). This is

because the only way that the update equations (6) are affected by the fault is due to the innovation feedback (zk−Hx̂k|k−1)



Fig. 3 – RD and MRD during a simulation scenario in ROCKET6G where 10 impulsive faults are introduced every 30 seconds starting at
t = 50 seconds in one of the GPS channels.

in (6a). Therefore, in our FDE algorithm design below we only use the modified version of the RD measure where only the
first term of (8) is considered, i.e.,

MRD = (zk −Hx̂k|k−1)>K>k P∗k|k
−1Kk(zk −Hx̂k|k−1), (9)

where P∗k|k = αPk|k + (1− α)Pk|k−1. Figure 3 shows RD and MRD plots for a simulation scenario in ROCKET6G where
10 impulsive faults are introduced every 30 seconds starting at t = 50 seconds in one of the GPS channels when α = 0.1 is
used. As we can see in the red plot, the difference between the RD and MD stays flat and shows no effect in detection the
fault.

Given the measurement model (4), we observe that MRD is a quadratic term of the fault vector fk. For healthy mea-
surements, the fault vector fk is a zero vector so that the innovations (zk − Hx̂k|k−1) form a zero-mean white sequence
with covariance SIk = HPk|k−1H

> + Rk. Then, the hypothesis that the filter is consistent and the healthy MRD =

(zk −Hx̂k|k−1)>K>k P∗k|k
−1Kk(zk −Hx̂k|k−1) has a chi-square distribution with nz degrees of freedom.

Our objective is to design a FDE algorithm that at each time step k given a set of GPS measurements from N channels,
can identify the set of non-faulty (healthy) measurements Vh ⊂ {1, · · · , N} and use them to update the INS propagated state
estimates. To preform the FDE algorithm in a computationally efficient manner, it is preferable to use the information filter
(IF) form of the EKF to compute the updates. The IF deals with the information vector and information matrix obtained from
the state vector and the covariance matrix as follows

Yk|k−1 = P−1k|k−1 (10a)

yk|k−1 = Yk|k−1xk|k−1 (10b)

Yk|k = Yk|k−1 +
∑

i∈Vh
H>i R−1i,kHi (10c)

yk|k = yk|k−1 +
∑

i∈Vh
H>i R−1i,kzi,k. (10d)

Using IF, the updated state estimate and corresponding error covaraince then is to (5), where

Pk|k = Y−1k|k, xk|k = Y−1k|k yk|k. (11)

Without an FDE algorithm, Vh = {1, · · · , N}, where N is the number of the available GPS channels. We let the updates due
to use of individual measurement channels be

Yi
k|k = Yk|k−1 + H>i R−1i,kHi (12a)

yik|k = yk|k−1 + H>i R−1i,kzi,k. (12b)

Then, the updated estimates after implementing the FDE algorithm and identifying the healthy measurement set Vh is

Yk|k = (N − |Vh|) Yk|k−1 +
∑

i∈Vh
Yi
k|k (13a)

yk|k = (N − |Vh|) yk|k−1 +
∑

i∈Vh
yik|k, (13b)



Fig. 4 – MRD of different α values for a simulation scenario in ROCKET6G where 10 impulsive faults of magnitude 10m are introduced
every 30 seconds starting at t = 50 seconds in one of the GPS channels.

TABLE I – The average ratio between the two spike values given different measures.

α average spike ratio (non-healthy to healthy)
0.1 1.4051
0.3 1.2875
0.5 1.1480
0.7 0.9742
0.9 0.7393

KLD 0.6617

where the final updated estimate is given by (11). Note that MRD (9) can also be compute equivalently as

MRD = (zk −Hx̂k|k−1)>K>k P∗k|k
−1Kk(zk −Hx̂k|k−1)

=
(∑

i∈Vh
H>i R−1i,kzi,k

)>
P∗k|k

−1
(∑

i∈Vh
H>i R−1i,kzi,k

)
, (14)

where P∗k|k = αY−1k|k + (1− α)Pk|k−1.

A. Selection of parameter α

The value of the RMD measure depends on the choice of parameter α. To ensure that P∗k|k is positive definite, we choose
α ∈ (0, 1). Use of 0 < α < 0.5 puts more weight on the propagated uncertainty level whereas 0.5 < α < 1 puts more weight
on the uncertainty level of the updated estimates. In a recent work [13] where Rényi Divergence divergence is used for design
of an FDE algorithm, α = 0.5 is used so there is no particular emphasise on either of propagated or updated uncertainty
level. Here, we employ a different approach. As we can see in Fig. 3 the faults result in spike in the divergence measure.
However, healthy measurements also can lead to spikes when there is drastic changes in the system dynamics. For example
in case of ROCKET6G model, at 371 seconds there is a spike in the divergence measure value due to the drastic change
in dynamical model. Our proposed method to choose α is to select a value for which the average ratio of the MRD caused
by faulty measurements and the largest ”healthy” MRD is at its largest value so that the distinction between the faulty and
non-faulty case is pronounced, i.e., the larger the ratio is, the more separable the faulty MRD is. Figure 4 shows MRD measure
for different values of α in a simulation scenario in ROCKET6G where 10 impulsive faults of magnitude 10m are introduced
every 30 seconds starting at t = 50 seconds in one of the GPS channels. Table I shows the average value of the divergence
spike value due to faulty measurements to the natural spike of the system when measurements are healthy at t = 371 seconds.
Table I shows also this ratio for when KLD measure is used. As Table I shows, the best value for α, where we have the most
distinction is α = 0.1. Interestingly the worse result is obtained for the KLD measure. Fig. 5 shows a statistical study that is
conducted to investigate the separability of faulty and non-fault cases when KLD, MRD with α = 0.5 and MRD with α = 0.1
are used as divergence measure. As we can see in this figure, the best separation is achieved when MRD with α = 0.1 is used
as divergence measure.



(a) (b)

(c)

Fig. 5 – Test statistics distributions in the faulty and non-faulty cases when KLD, MRD with α = 0.5 and MRD with α = 0.1 are used
as divergence measure.: the histogram in grey represents the probability distribution of the non-faulty divergence measure values, and the
one in blue represents that of the faulty divergence measure values. For the faulty cases, impulsive faults, selected uniformly randomly from
5 − 15 meters are added to one of the GPS channel measurements.

B. Fault detection threshold design

To design our fault detection threshold value, we use a standard hypothesis testing approach, following [19]. Let H0 denotes the
hypothesis that there is no fault in the measurements and H1 otherwise. According to Neyman-Pearson Lemma, the likelihood
ratio is

Λ(H1, H0) =
p(MRD|H1)

p(MRD|H0)
,

where the distributions of p(MRD|H0) is obtain by Monte Carlo runs. This expression is equivalent to

MRD
H1

≷
H0

λ. (15)

The threshold λ for false alarm probability β follows from

P{MRD ∈ [0, λ]|H0} = 1− β, (16)

where the interval [0, λ] is the one-sided 1− β probability concentration region or confidence interval for MRD and β is also
called the tail probability. If MRD > λ, then H0 is rejected while H1 is accepted and vise versa. And the threshold λ is
obtained by solve for the chi-square cumulative probability function given β in (16).

C. Ratio test to increase the detection accuracy

Faulty measurement is not the only reason that causes spikes in MRD. Rapid change in system dynamics also has the same
effect on MRD in terms of the deviation in propagated estimate, which consequently results in false alarms in the detection



Fig. 6 – Ratio test statistics distribution histogram for 10 Monte Carlo runs with MRD with α = 0.1 and fault magnitudes from 5 − 15

meters.

of fault if only total MRD is considered. Therefore, to reduce false alarms and improve the accuracy of fault detection, we
propose a ratio test to utilize the individual MRD computed according to

MRDj = (H>i zk,j −Hjx̂k|k−1)>K>k,jP
j∗
k|k
−1Kk,j(zk,j −Hjx̂k|k−1) = (H>j R−1k,jzk,j)

>Pj∗
k|k
−1(H>j R−1k,jzk,j), (17)

j ∈ {1, · · · , N}, where Pj∗
k|k = αYj

k|k
−1 + (1 − α)Pk|k−1.The idea of the ratio test is considering the case that not all the

measurements are faulty simultaneously, after obtaining the individual MRDs, a fault is detected in a particular measurement
channel j if and only if the ratio between the corresponding individual MRDj and the smallest individual MRD in this update
step is greater than a predefined threshold γ, i.e.,

MRDj

min{MRDi}i=nz

i=1

> γ, j ∈ {1, · · · , N}. (18)

In healthy measurement scenarios (fault free measurements), all the individual MRDs should be relatively within the same
scale despite the possible maneuver of the vehicle. In other words, the measurement channel j is said to fail the ratio test
if its corresponding individual MRDj is significantly greater than the remaining ones in the sense that it is γ times larger
than others. γ is selected statistically via Monte Carlo runs with introduced faults to make it as the lower bound so that no
miss detection exists. We conducted a simulation study in ROCKET6G to determine distribution of the ratio test statistics for
impulsive faults with magnitude from 5− 15 meters. The result is shown in Fig. 6. The low bound of the ratio test statistics,
which is 3.2434, is chosen for the value of γ to minimize miss detection rate in the simulation of MRD based FDE algorithm
in Section V.

D. The proposed FDE algorithm

Our proposed MRD-based FDE algorithm is shown in Algorithm 1. In our algorithm, when N satellites are detected, the
measurements are all used to obtain the updated state. Then, the MRD measure is calculated for this updated estimate. If the
value is above the threshold value λ, the existence of a fault in GPS measurements is declared. Then, for the fault isolation
stage, where the INS propagated estimate is updated in n parallel IF filters, which each corresponds to one of the GPS channels
(IFj , j ∈ {1, · · · , N}). Next, the MRD is computed for each update (MRDj , j ∈ {1, · · · , N}). A ratio test is conducted for
these individual MRDs which is explained in the later section. The GPS channels corresponding to the MRDj that fails the
ratio test are declared faulty. These GPS channels are removed from the batch before the fusion step and the remaining GPS
measurement are used to check whether the corrected total MRD value is reduced below the predefined threshold value, whose
selection procedure is explained later. With the help of ratio test, the isolation and exclusion of the fault can be done in one step
instead of being a recurrent process which might potentially have computational issues when the number of faulty channels
increases.

V. DEMONSTRATION STUDY

In what follows we conduct several simulations study in ROCKET6G in CADAC++ to demonstrate the performance of our
proposed FDE Algorithm 1. For these simulations, we use the following parameters for our RMD measure: α = 0.1, β = 0.05
with the corresponding λ = 0.2289 and γ = 3.2434. In the first simulation, a total number of 36 impulsive faults with



Algorithm 1 MRD based FDE Algorithm.

1: Input: {H>i R−1i,kHi,H
>
i R−1i,kzi,k}Ni=1, Pk|k−1, x̂k|k−1, λ, γ

2: Init:Vh = {1, · · · , N}, Vh = { },
3: Compute total MRD from (14)
4: Compute {MRDj}Nj=1, from (17)
5: Compute min{MRDj}Nj=1

6: if MRD ≤ λ then
7: No fault detected
8: else
9: for j ∈ Vh do

10: if MRDj
min{MRDj}Nj=1

> γ then
11: Vf ← {j}
12: end if
13: end for
14: Vh ← Vh\Vf
15: end if
16: Output: Vh

Fig. 7 – MRD plot for the FDE simulation of impulsive faults.

Fig. 8 – Performance of MRD based FDE method for impulsive faults without ratio test aided. The blue circles represent the successful
detection of fault while the red crosses represent the false alarm

magnitudes randomly selected from 5 − 15 meters are added to the pseudorange measurement of GPS channel 2 every 10
seconds starting from t = 10 second. The simulation results are shown in Fig. 7, Fig. 8 and Fig. 9. As shown in the figures,
without the ratio test, there exist 18 false alarms. The implementation of the ratio test reduces the false alarm significantly
according to Fig. 8 and Fig. 9. The spikes due to dynamics change exceeding threshold γ in Fig. 7 are not declared as faulty
with the aid of ratio test while the faulty ones are detected.

In the second simulation, three step faults (with duration of 10 seconds each) are added to the pseudorange measurement of
GPS channel 2 at t = 200 second, t = 230 second and t = 260 second. Fig. 10 - Fig. 12 demonstrate how the MRD based
algorithm behaves in this case. Note that the gray areas in the figures represent the time period when the faults are introduced.
As shown, all three step faults are detected and excluded by monitoring MRD with reduced false alarm in Fig. 12 and without
miss detection after applying ratio test. The fault detection alert is triggered every consecutive step during the fault period
because the previous fault is excluded while the upcoming measurements still contain faulty components which make the MRD



Fig. 9 – Performance of MRD based FDE method for impulsive faults with ratio test aided. The blue circles represent the successful
detection of fault while the red crosses represent the false alarm.

Fig. 10 – MRD plot for the FDE simulation of step faults.

Fig. 11 – Performance of MRD based FDE method for step faults without ratio test aided. The blue circles represent the successful detection
of fault while the red crosses represent the false alarm.

Fig. 12 – Performance of MRD based FDE method for step faults. The blue circles represent the successful detection of fault while the
red crosses represent the false alarm.

exceed threshold.

The last simulation demonstrates the performance of our proposed algorithm in detecting incipient faults, which is also called
slowly-varying faults. This fault is “deceptive” to many FDE algorithms because if it increases slowly enough, it contaminates
the entire state estimate without being detected. An incipient fault model from [2] shown in Fig. 13 is used for testing the
MRD based FDE algorithm. This incipient fault is added at t = 190 second. The behavior of the algorithm is demonstrated
in Fig. 14 and Fig. 15. The incipient fault is detected immediately after it appears, which prevents the state estimate from
diverging due to the accumulation of faults in measurements.



Fig. 13 – A real fault model based on the observations from satellite PRN 23 in Jan. 1st 2004 [2].

Fig. 14 – MRD plot for the FDE simulation of incipient faults.

Fig. 15 – Performance of MRD based FDE method for incipient faults. The blue circles represent the successful detection of fault.

VI. CONCLUSION

In this paper, a modified Rényi divergence based FDE approach for tightly coupled GNSS/INS system has been proposed. The
main contribution of this paper was to analyse the components of the Rényi divergence close form under Gaussian assumption
and to propose the modified Rényi divergence as the new test statistics. Further, the selection of the order α is done statistically
according to the features of the platform CADAC++. The simulation results show the desirable performance for FDE and both
reducing false alarm cases and eliminating miss detection cases. Moreover, with the help of the ratio test, the approach can
detect multiple faults in one single check.
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