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Abstract: This paper proposes a distributed containment control solution for a group of
communicating mobile agents that aim to track the convex hull spanned by a group of moving
leaders with unknown dynamics. The communication topology of the mobile agents is described
by a strongly connected and weight-balanced directed graph. In our problem setting the agents
can communicate in discrete-time and also detect the leaders in specific sampling times. Our
next contribution in this paper is to show how a group of unicycle robots can use our proposed
containment control algorithm to track the convex hull of their jointly monitoring mobile
leaders. In our proposed framework, the unicycle robots have continuous-time dynamics but
communicate with each other in discrete-time fashion. We demonstrate our results through a
numerical example.
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1. INTRODUCTION

We consider the problem of the distributed containment
control for a group of communicating mobile agents. The
objective is to drive a group of mobile agents into a region
that is enclosed by another set of agents, which we refer to
as leaders. A prime application example for containment
problem is when a group of communicating robots follows
a group of leader robots that have the ability to avoid
obstacles when they transport through a hazardous area
(Liu et al. (2012b)). Other potential applications include
formation control for UAVs (Wang et al. (2007)) and
underwater vehicles (Hou and Cheah (2011)), hazardous
material delivery (Engelberger (2012)) and mobile sensor
networks (Iyengar and Brooks (2016)).

Containment control has been of interest in the literature
in recent years. Dimarogonas et al. (2006) proposed a
control for a group of unicycle agents that drove the leaders
to a formation and the followers to the convex hull. Ji et al.
(2008) designed a containment control for single integrator
agents based on the theory of partial differential equations
and a stop-go policy for the moving leaders. For double
integrator agents, the containment control problem was
considered in Li et al. (2012) and Wang et al. (2014). The
algorithms propose in Dimarogonas et al. (2006); Ji et al.
(2008); Li et al. (2012); Wang et al. (2014) require the com-
munication topology of the followers to be an undirected
graph. In some situations, the interaction topology among
agents may be a directed graph due to realistic communi-
cation restrictions. Accordingly, Cao et al. (2012) extended
the work of Ji et al. (2008) and focused on switching di-
rected interaction topology among agents. The agents with
more complex dynamics under directed interaction graphs
was investigated in Liu et al. (2012a) for general linear
dynamics and Mei et al. (2012) for nonlinear Lagrangian
dynamics, respective. Nevertheless, the work mentioned
so far needs to continuously exchange information among
the network, which may not be realistic in practice. In
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Galbusera et al. (2013), a group of agents with discrete-
time dynamics was considered and the containment control
problem was solved by a discrete-time scheme of hybrid
model predictive control. However, it is preferable to hav-
ing a controller for continuous-time dynamics agents with
discrete-time communications with their neighbors. Liu
et al. (2012b) proposed a containment control based on pe-
riodic sampled-data for agents with continuous-time single
and double integrator dynamics over a directed graph. Fur-
thermore, aperiodic sampled-based containment controls
for double integrator and continuous-time linear agents
were studied by Liu et al. (2014) and Liu et al. (2015),
respectively. It is worth to mention that all of the work
mentioned above is considering the homogeneous network
systems, that is all agents are with an identical dynamics.
Zheng and Wang (2014) considered a heterogeneous multi-
agent system that the leader group and the follower group
could be with either single or double integrator dynam-
ics, respectively. Haghshenas et al. (2015) studied a more
general case that the follower agents were with different
linear dynamics and the leader group has the same passive
linear dynamics (linear dynamics without input). However,
for the work of Zheng and Wang (2014) and Haghshenas
et al. (2015), the leaders are still homogeneous and their
dynamics are assumed to be known to the followers.

In this paper, we propose a distributed containment con-
trol algorithm for a group of agents, which communicate
over a strongly connected and weight-balanced directed
graph. The agents jointly detect a group of moving leaders
in a periodic sampling time. Each agent detects a subset
(could be empty) of the leaders and computes the average
center of the subset. Then, the discrete-time containment
control algorithm based on the dynamic average consensus
algorithm is developed to track a point in the convex hull
of the observed leaders. Therefore, even though some of
the agents do not observe any leaders, they can still track
the convex hull. Note that, there is no assumption about
the leaders’ dynamics (they can be heterogeneous) and the
agents only measure the positions of the leaders. Next, we
show that our proposed containment control algorithm can



be further applied to a group of unicycle robots to track
the convex hull of the mobile leaders. The control scheme
combines the discrete-time containment control algorithm
as an observer to estimate the position of the point in the
convex hull and a local finite-time control to track their
estimate, such that the control scheme can drive the robots
to the convex hull in time. In our proposed framework,
the unicycle robots have continuous-time dynamics but
communicate with each other in discrete-time fashion.
A numerical example demonstrates the efficiency of the
proposed solution.

The rest of this paper is organized as follows. Section 2
introduces our basic notation, graph-theoretic definitions
and notions and reviews the dynamic average consensus
algorithm, which we use in our developments. Section 3
gives our problem definition and objective statement. Sec-
tion 4 presents our main result on design of a distributed
containment control algorithm. Section 5 applies the con-
tainment control scheme for unicycle robots. Section 6
gives a numerical example to demonstrate our results.
Section 7 concludes the results of this paper.

2. NOTATIONS AND PRELIMINARIES

Notation: We let R, R>0, R≥0, Z, and Z≥a denote the
set of real, positive real, non-negative real, integer, and
integer numbers greater than a ∈ Z, respectively. The
transpose of a matrix A ∈ Rn×m is A>. For s ∈ Rd,

‖s‖ =
√
s>s denotes the standard Euclidean norm. For a

given set of points X = {x1,x2, · · · ,xM} in a Euclidean
space, their convex hull is Co(X ) = {q ∈ Rn|q =∑M

j=1 αjxj , α ≥ 0,
∑M

j=1 αj = 1}, which is the smallest
convex set containing all the points in X . In a network
of N agents, to distinguish and emphasis that a variable
is local to an agent i ∈ {1, . . . , N}, we use superscripts,
e.g., xi is the local variable of agent i. Moreover, if

ri ∈ Rni

is a variable of agent i ∈ V = {1, · · · , N}, the
aggregated ri’s of the network is the vector r = [{ri}i∈V ] =

[r1>, · · · , rN>]> ∈ Rm, m =
∑N

i=1 n
i.

Graph theoretic notations and definitions: Here we review
our graph related notations and relevant definitions and
concepts from graph theory following Bullo et al. (2009).
A digraph, is a triplet G = (V, E ,A), where V = {1, . . . , N}
is the node set and E ⊆ V × V is the edge set, and
A = [aij ] ∈ RN×N is the adjacency matrix of the graph
defined according to aij = 1 if (i, j) ∈ E and aij = 0,
otherwise. An edge (i, j) from i to j means that agent
j can send information to agent i. Here, i is called an
in-neighbor of j and j is called an out-neighbor of i. A
directed path is a sequence of nodes connected by edges.
The out-degree of a node i is diout = ΣN

j=1aij . We let

dmax = max{diout}Ni=1. The out-degree matrix of a graph
is Dout = Diag(d1

out, d
2
out, · · · , dNout). The (out-) Laplacian

matrix is L = Dout − A. Note that L1N = 0. A weighted
digraph G is weight-balanced if and only if 1>NL = 0. Based
on the structure of L, at least one of the eigenvalues of L
is zero and the rest of them have nonnegative real parts.

Average dynamic consensus algorithm: In our develop-
ments we will use a dynamic average consensus algorithm
(see Kia et al. (2019)) as described in the lemma below .

Lemma 1. (Dynamic average consensus algorithm). Let
G(V, E) be a strongly connected and weight-balanced di-
graph of N agents. Assume each agent i ∈ V has access to
a dynamic input ri(k) = ri(tk) at time tk = kδ, δ ∈ R>0,

k ∈ Z≥0. For δ ∈ (0, β−1(dmax)−1) , where β ∈ R>0, if
each agent i ∈ V implements

pi(k + 1) = pi(k) + δβ

N∑
j=1

aij(x
i(k)− xj(k)), (1a)

xi(k) = ri(k)− pi(k), (1b)

starting at pi(0) = 0, then the trajectory k 7→ pi(k) of
each agent i ∈ V is bounded and satisfies

lim
k→∞

∥∥∥xi(k)− 1

N

N∑
j=1

rj(k)
∥∥∥ ≤ γ(∞) δ

βλ̂2

, (2)

where sup
k̄∈Z≥k

‖(IN− 1
N 1N1>N )(r(k̄+1)−r(k̄))‖ = γ(k) <∞,

and λ̂2 is second smallest eigenvalue of L.

3. PROBLEM DEFINITION

In this section, we formalize our distributed containment
control problem of interest. We assume that a group of M
(M can change with time) mobile leaders are moving with
a bounded velocity on a R2 or R3 space. We let xL,j(t)
be the position vector of leader j ∈ {1, . . . ,M} at time
t ∈ R≥0. In our setting, a set of networked mobile agents
V = {1, · · · , N} monitors the leaders. The communication
topology G of the agents is a strongly connected and
weight-balanced digraph and the agents can communicate
at discrete-times tk = kδc, k ∈ Z≥0, δc ∈ R>0. The
agents sample the leaders at sampling times tsk = kδs,
k ∈ Z≥0, δs ∈ R>0. We let Vi

L(tsk) be the set of leaders
observed by agent i ∈ V at sampling time tsk. Between
each sampling time, agent i ∈ V uses xL,j(t) = xL,j(t

s
k)

and Vi
L(t) = Vi

L(tsk), t ∈ [tsk, t
s
k+1), k ∈ Z≥0, j ∈ Vi

L(tsk). At
every sampling time tsk ∈ R≥0, we let VL(tsk) be the set of
the mobile leaders that are observed jointly by the agents
V, i.e., VL(tsk) = ∪Ni=1Vi

L(tsk) (see Fig. 1). We let Vo(tsk) ⊂ V
be the set of the agents that observe at least one leader
at tsk, k ∈ Z≥0; we assume that Vo(tsk) 6= ∅. Our objective
in this paper is to design a distributed control algorithm
that enables each agent i ∈ V to derive its local state χi to
asymptotically track Co(VL(tsk)), the convex hull of the set
of the location of the leaders VL(tsk) with a bounded error
e ≥ 0 (to simplify notation, we wrote Co({xL,j(t)}j∈VL(t))
as Co(VL(t))). We state our objective as

‖χi(tk)− x̄L(tk)‖ ≤ e, i ∈ V. (3)

where x̄L(tk) ∈ Co(VL(tk)). We assume that the agents
have no knowledge about the motion model of the leaders.
As the information of each agent takes some time to
propagate through the network, tracking the convex hull
of an arbitrarily fast moving leader set with zero error is
not feasible unless agents have some a priori information
about the dynamics generating the signals. Also, how fast
the information travels across the network G depends on
the connectivity of G. Interestingly, as expected, we will
show that the size of the error e is going to be a function

of the bound on the velocity of the leaders and λ̂2, which
is a measure of connectivity of the network. We will also
show that when the leader set is stationary and observed
by the same set of agents, the agents converge to a point
in the convex hull of the leader set, i.e., e = 0.

4. CONTAINMENT CONTROL ALGORITHM

In this section, we present our solution for the distributed
containment control problem stated in Section 3. If the



Fig. 1. The agent set and the leader set. The ellipsoids show the
observation zone of the observing agents.

Fig. 2. Graphical demonstration of Lemma 2 for an example case.

number of the leaders is equal to the number of the agents,
i.e., |VL(tsk)| = N , and Vi

L(tsk)∩Vj
L(tsk) = ∅ for any i, j ∈ V,

i 6= j, a simple solution to our containment problem of
interest is to implement the dynamic average consensus
algorithm (1) with ri(k) =

∑
j∈Vi

L
(tk) xL,j(tk) for i ∈ V

(when Vi
L(tk) = ∅, we use ri(k) = 0). This is because, in

this scenario, as certified by Lemma 1, the agents track
the geometric center of the leader set, which is a point in
the convex hull of the leader set, with a bounded error.
However, in general, as the agents monitor the leader
set, the observed leader sets Vi

L(tsk), i ∈ V of the agents
likely have overlap and also the number of the leaders are
different than the number of the agents, see Fig 1. In what
follows, we present a simple solution for the containment
problem that works for the general case.

To present our solution, we first make the following key
observation about the convex hull of a set of points {xi}mi=1
in an Euclidean space. The proof of this result is omitted
due to space limitation and will appear elsewhere.

Lemma 2. (Auxiliary result on convex hull of a set of
points). Consider a set of points {xi}mi=1 in R2 or R3. Let
Sj 6= ∅, j ∈ {1, · · · , r}, be a subset of {1, · · · ,m}. Let

x̄j =

∑
k∈Sj

xk

|Sj | , j ∈ {1, · · · , r}. Then, the point

x̄ =

∑r
i=1 x̄i

r
(4)

is a point in Co({xj}mj=1). 2

We note here that in Lemma 2, Si ∩ Sj = ∅, i, j ∈
{1, · · · , r}, is not required. An example case that demon-
strates the result of Lemma 2 is shown in Fig. 2.

Now for the containment problem, consider the general
case when 0 < |Vo(tsk)| ≤ N , and for any two distinct

agents i, j ∈ Vo(tsk), Vi
L(tsk) ∩ Vj

L(tsk) is not necessarily
empty. Then, in light of Lemma 2, we know that

x̄L(tsk) =

∑N
i=1 r

i(tsk)

|Vo(tsk)|
∈ Co(VL(tsk)), (5)

where

ri(tsk) =


∑

j∈Vi
L

(ts
k
) xL,j(t

s
k)

|Vi
L(tsk)|

, i ∈ Vo(tsk),

0, i ∈ V\Vo(tsk).

(6)

Based on this observation, we propose the following dis-
tributed solution for our containment problem of interest.
Our solution uses two dynamic average consensus algo-
rithms of the form (1), to obtain the numerator and the
denominator of x̄L in (5).

Theorem 3. (Distributed containment control algorithm).
Let the communication topology of the agents V be a
strongly connected and weight-balanced digraph G(V, E).
Assume that Vo(tsk) 6= ∅ at each sampling time tsk, k ∈
Z≥0. Let ri(t) = ri(tsk), i ∈ V, and x̄L(t) = x̄L(tsk)
for t ∈ [tsk, t

s
k+1), where ri(tsk) and x̄L(tsk) are given re-

spectively, in (5) and (6). Moreover, let r̄i(tk) = 1 if
i ∈ Vo(tk), and r̄i(tk) = 0 if i ∈ V\Vo(tk). Suppose that
sup

k̄∈Z≥k

‖r(tk̄+1)− r(tk̄)‖ = γ(tk) <∞, and sup
k̄∈Z≥k

‖r̄(tk̄+1)−

r̄(tk̄)‖ = γ̄(tk) < ∞. Assume that each agent i ∈ V
implements the distributed algorithm

pi(tk+1) = pi(tk) + δcβ

N∑
j=1

aij(w
i(tk)−wj(tk)), (7a)

wi(tk) = ri(tk)− pi(tk), (7b)

qi(tk+1) = qi(tk) + δcβ

N∑
j=1

aij(z
i(tk)− zj(tk)), (7c)

zi(tk) = r̄i(tk)− qi(tk), (7d)

χi(tk) =
wi(tk)

max{ε, |zi(tk)|}
, (7e)

β ∈ R>0, initialized at pi(t0) = 0 and qi(t0) = 0, with a
communication stepsize δc ∈ (0, β−1(dmax)−1) (tk = δck,
k ∈ Z≥0). Here, 0 < ε < 1/N is a small positive real
number. Then, there exists a bounded value e ∈ R>0 such
that

‖χi(tk)− x̄L(tk)‖ ≤ e, tk ∈ R≥0, i ∈ V, (8)

Moreover, if for a finite k̄ ∈ Z≥0 we have γ̄(tk) = 0 for all
k ∈ Z≥k̄, i.e., the set of observing agents is not changing
with time for tk ≥ tk̄, we have

lim
k→∞

‖χi(tk)− x̄L(tk)‖ ≤ Nγ(∞) δc

|Vo(tk̄)|βλ̂2

, i ∈ V. (9)

Proof. Given the initial conditions and stated bounds on
r = [{ri}i∈V ] and r̄ = [{r̄i}i∈V ], by invoking Lemma 1, we
conclude that for k ∈ Z≥0 the trajectories k 7→ wi(tk) and
k 7→ zi(tk), i ∈ V are bounded and satisfy

lim
k→∞

|Vo(tk)|
N

∥∥∥wi(tk)/
N

|Vo(tk)|
− x̄L(tk)

∥∥∥ =

lim
k→∞

∥∥∥wi(tk)− 1

N

∑
j∈Vo(tk)

rj(tk)
∥∥∥ ≤ γ(∞) δc

βλ̂2

,

(10a)

lim
k→∞

∣∣∣zi(tk)− |Vo(tk)|
N

∣∣∣ ≤ γ̄(∞) δc

βλ̂2

. (10b)

Therefore, we can conclude that ‖χi(tk)‖ is finite for all
k ∈ Z≥0, which confirms also (8). Next, if for a finite



Fig. 3. A unicycle robot and its corresponding state variables.

k̄ ∈ Z≥0 we have γ̄(tk) = 0 for all k ∈ Z≥k̄, we note

that from (10b) we obtain limk→∞ zi(tk) = |Vo(tk̄)|
N , i ∈

V. Consequently, limk→∞ χi(tk) = N
|Vo(tk̄)| limk→∞wi(tk),

which along with (10a) confirms (9).

It is worth nothing that if in addition to the set of
observing agents not changing with time for tk ≥ tk̄ for

all k ≥ k̄ ≥ 0, we also have γ(tk) = 0 for k ≥ k̂ ≥ k̄ (every
i ∈ Vo(tk) observes the same leaders for t ≥ tk̂ and the
leaders converge to a stationary configuration), it follows
from (9) that limk→∞ χi(tk) = x̄L(∞), i ∈ V. We also note
here that use of a dynamic average consensus algorithm
in constructing the distributed containment controller (7)
results in a better tracking performance than use of a
static average consensus (Olfati-Saber and Murray (2004))
that gets re-initialized at each sampling time with the new
observed inputs. For more details see the example scenario
discussed in Figure 2 of Kia et al. (2019), which compared
performance of a dynamic average consensus algorithm
and a static average consensus algorithm for sampled time-
varying input signals.

5. AN APPLICATION EXAMPLE: CONTAINMENT
PROBLEM FOR A GROUP OF NETWORKED

UNICYCLE ROBOTS

In this section, we demonstrate how a group of N unicycle
robots with strongly connected and weight-balanced topol-
ogy can track the convex hull of a set of leaders that they
observe. Let the dynamics of each robot be expressed by

xi =

ẋiẏi
θ̇i

 =

vi cos θi

vi sin θi

ωi

 , i ∈ V, (11)

where xi, yi ∈ R are the coordinates in 2 dimensional space
and θi ∈ R is the heading angle of the robot. vi, ωi ∈ R
are, respectively, the linear velocity and angular velocity
of robot i ∈ V. We define a head point

xi
h =

[
xih
yih

]
=

[
xi + b cos θi

yi + b sin θi

]
, i ∈ V. (12)

as a position at a distance b along the main axis of the
robot i as shown in Fig. 3. The head point can be the
place where the robot observation sensor (e.g., camera)
is located or a point that carry sensitive goods. There is
another group of mobile robots called leaders, which have
the ability to avoid obstacles. These unicycle robots want
to track the leaders and keep their head points inside the
convex hull formed by the leaders. The unicycle robots
communicate to their neighbors at the instant tk, k ∈ Z≥0
with the time period δc and jointly detect the positions of
the leaders xL,j , j ∈ VL(tsk) at the instant tsk with time
period δs, but they do not have the information of the
leaders’ dynamics.

To control the unicycle robots to stay in the convex hull
Co(VL(tsk)) of the moving leaders, we propose a two-layer

containment control scheme. The first layer is a distributed
observer with the discrete-time process of (7) proposed in
Theorem 3 which produces a estimated position χi(tk) of
a pin x̄L ∈ Co(VL(tsk))) at every discrete communication
time tk. By this distributed observer, the robots can
estimate the position of the pin in the convex hull even
though some of them could not detect any leader. Then, in
order to track the discrete estimate χi(tk) in time, we use
a local finite-time converging controller which drives the
head point of the continuous-time unicycle robot to track
χi(tk) before the next communication time tk+1. That is

xi
h(tk+1) = χi(tk), i ∈ V. (13)

The following result gives the local tracking control that
realizes the objective (13).

Theorem 4. (Finite-time converging controller to track the
convex hull of the leaders). Consider a group of N unicycle
robots with dynamics described by (11) and the head
point defined by (12). Let the communication topology of
the robots be a strongly connected and weight-balanced
digraph and suppose the robots are implementing the
containment controller (7). Starting at an initial condition
xi(t0) ∈ R3 , let for t ∈ [tk, tk+1)

vi(t) = ui1 cos θi + ui2 sin θi, (14a)

ωi(t) =
ui2 cos θi − ui1 sin θi

b
, (14b)

ui(t) =

[
ui1
ui2

]
=

1

δc
(χi(tk)− xi

h(tk)). (14c)

Then, for every robot i ∈ V, we have limt→t−
k+1

xi
h(t) =

χi(tk) for all k ∈ Z≥0.

Proof. Note that

ẋi
h =

[
ẋi − bθ̇i sin θi

ẏi + bθ̇i cos θi

]
, i ∈ V.

Substituting for robot dynamics from (11) and using the
velocity inputs (14a) and (14b), we arrive at (see De Luca
et al. (2001))

ẋi
h =

[
ui1
ui2

]
. (15)

Then, using the control input (14c), we obtain

xi
h(t) = xi

h(tk) +
t− tk
δc

(χi(tk)− xi
h(tk)), t ∈ [tk, tk+1),

for i ∈ V, which confirms that limt→t−
k+1

xi
h(t) = χi(tk) for

all k ∈ Z≥0.

6. NUMERAL DEMONSTRATION

In this section, we use a numerical example to demonstrate
the performance of the distributed containment control
algorithm (7) and the local tracking controller (14). We
consider a group of 6 unicycle robots with dynamics (11)
whose communication topology is given in Fig. 4. A
position defined by (12) is the head point for each robot.
The robots aim to make their head points to track the
convex hull that is formed by 10 mobile leaders with
unknown dynamics, moving in a 2D flat space. The robots
detect the leaders at the frequency 0.5 Hz, i.e., δs = 2
seconds. The observed leaders by the robots are time
varying as described below (time intervals are in second):

- 0 ≤ tsk < 5: V1
L(tsk) = {1, 4, 6, 8}, V2

L(tsk) =
{2, 4, 7, 8, 10}, V3

L(tsk) = {3, 4, 5, 9}, V4
L(tsk) = ∅,

V5
L(tsk) = {1, 3, 9} and V6

L(tsk) = ∅,
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Fig. 4. A strongly connected and weight-balance topology with edge
weights of 0 and 1.

Fig. 5. The tracking performance of the robots while implementing
the distributed containment observer (7) and the local con-
trol (14) with δc = 0.5 seconds: the lines show the trajectory
of (xih, y

i
h) vs. time, while “+” show the location of x̄L(tk) of

the leaders. The red polygons indicate the convex hull formed
by the moving leaders at each sampling time.

- 5 ≤ tsk < 10: V1
L(tsk) = {3, 5, 6, 8}, V2

L(tsk) =
{1, 2, 7, 9, 10}, V3

L(tsk) = {3, 4, 5, 9}, V4
L(tsk) = ∅,

V5
L(tsk) = {1, 3, 9} and V6

L(tsk) = {2, 5, 7, 9},
- 10 ≤ tsk ≤ 20: V1

L(tsk) = {1, 2, 5, 8}, V2
L(tsk) =

{2, 3, 6, 7, 10}, V3
L(tsk) = {3, 4, 5, 9}, V4

L(tsk) = {3, 10},
V5
L(tsk) = {1, 3, 9} and V6

L(tsk) = {2, 5, 7, 9}.
The robots implement their distributed containment ob-
server (7) at the communication frequency of 2 Hz, i.e.,
δc = 0.5 seconds, to estimate x̄L(tk) which is in the convex
hull formed by the leaders. The time varying convex hull of
the observed leaders are shown by the red closed curves in
Fig. 5 and Fig. 6. These figures along with Fig. 7 also show
that for the given scenario, our proposed tracking control
scheme achieves its tracking goal satisfactorily. Figure 8
and Fig. 9 show the performance of our containment con-
troller when robots communicate in a higher frequency
with δc = 0.1 seconds. As we can see, the containment
observer converges faster in every sampling interval and
the tracking error start to diminish over time. It is very
likely that the δs is much bigger than δc. For such cases,
the containment observer results shown in Fig. 7 and
Fig. 9 suggest that instead of deriving the local states
to satisfy (13) we can use a lower tracking frequency to
avid the transient perturbation at the beginning of each
sampling time.

7. CONCLUSION

In this paper, we first proposed a distributed algorithm
to solve a containment control problem for a group of
follower agents that are communicating in discrete-time
over a strongly connected and weight-balance digraph. In
our problem of interest, the follower agents observed the
location of a set of leader agents at a pre-specified sampling
times and used our proposed algorithm to track the convex
hull of the dynamic leaders. After developing the dis-

Fig. 6. The snapshots showing the leaders convex hull (red poly-
gons), the location of the head point (xih, y

i
h) of the robots

(“o” markers) and the location of x̄L(tk) (“+” marker), when
robots implement the distributed containment observer (7) and
the local control (14) with δc = 0.5 seconds.

Fig. 7. Time history of the output of the containment observer (7)
with δc = 0.5 seconds: the blue curves show χi and the markers
“+” show the location of the coordinates of x̄L(tk). The jumps
in the location of x̄L(tk) is due to the motion of the leaders and
also the changes in the set of the observed leaders by each agent.

tributed containment algorithm, we proposed a two-layer
control scheme to apply the containment control algorithm
for a group of unicycle robots. In this control scheme, at
the first layer we used the distributed containment control
algorithm as the observer to estimate the location of a
point in the convex hull of the moving leaders. In the
second layer we used a local finite-time controller to drive



Fig. 8. The tracking performance of the robots while implementing
the distributed containment observer (7) and the local con-
trol (14) with δc = 0.1 seconds: the lines show the trajectory
of (xih, y

i
h) vs. time, while “+” show the location of x̄L(tk) of

the leaders. The red polygons indicate the convex hull formed
by the moving leaders at each sampling time.

Fig. 9. Time history of the output of the containment observer (7)
with δc = 0.1 seconds: the blue curves show χi and the markers
“+” show the location of the coordinates of x̄L(tk). The jumps
in the location of x̄L(tk) is due to the motion of the leaders and
also the changes in the set of the observed leaders by each agent.

the unicycle robots to track the output of the containment
observer in finite time. In this framework, dynamics of
the unicycle robots were continuous-time but the robots
communicated with each other in discrete-time fashion.
Numerical simulations demonstrated the efficiency of our
proposed algorithms.
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