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Abstract— In this paper, we consider a leader-follower problem
for a group of homogeneous linear time invariant (LTI) follower
agents that are interacting over a directed acyclic graph. In our
problem of interest, only a subset of the follower agents has
access to the state of the leader in specific sampling times. The
dynamics of the leader that generates its states is unknown to
the followers. For interaction topologies in which the leader is
a global sink in the graph, we propose a distributed algorithm
that allows the agents to arrive at the sampled state of the leader
before the next sample arrives. We prove that the control input
to take the followers from one sampled state to the next one is
minimum energy for all the followers. We also show that after
the first sampling epoch, the states of all the follower agents are
synchronized with each other. We demonstrate the application
of our proposed algorithm for two leader-follower problems
for mobile agents. Our first example shows the application of
our algorithm in control of unicycle robots in a formation
motion. In the second example, we demonstrate the use of
our algorithm for reference state tracking via a group of
second order integrator followers with bounded control. In this
example, we show that the properties of our proposed leader-
follower algorithm allow us to design the arrival times at the
reference states in such a way that the input bounds of the
agents never get violated.

I. INTRODUCTION

Synchronization of multi-agent systems (MASs) is an impor-
tant component of many cooperative control problems, such
as rendezvous [1], formation control [2], flocking control [3],
containment control [4] and sensor networks [5]. Synchro-
nization problems are usually categorized into leaderless and
leader-following problems. In the leaderless synchronization,
which is closely related to the consensus problem, the agents
aim to reach to a static or dynamic agreement on a common
value [6], [7], [8]. On the other hand, in the leader-following
synchronization, agents aim to make the agreement on the
states generated by a leader. In this paper, we focus on the
design of a distributed leader-follower algorithm when the
only information available about the leader is its sampled
state, which is only available to a subset of follower agents.

Literature review: The leader-following algorithms for single
integrator and double integrator dynamics are presented
in [9] and for linear time invariant (LTI) systems are
proposed in [10] and [11]. However, the leader in these
references is passive, i.e., the leader has a zero-input LTI
dynamics. [12] and [13], respectively, develop distributed
controllers for single and double integrator follower groups
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to track an active LTI leader. But they both assume the
leader’s control input is available to all the followers. [14]
proposes a leader-following algorithm for a homogeneous
LTI follower and leader agents in which the unknown input
of the leader is bounded and is not available to any follower.
This algorithm has a sliding mode structure and suffers from
the well-known undesirable chattering behavior. We recall
that from a practical perspective, chattering is undesirable
and leads to excessive control energy expenditure [15]. [16]
is the recent result for the leader-following problem, which is
based on the result of [14] and develop a distributed observer
designed to estimate the leader’s state for each follower.
Then, the output synchronization of heterogeneous leader-
follower linear systems is achieved by optimal local tracking
of the output of the observer. We note that in both [14]
and [16], the active leader is restricted to have a bounded
input. For the works mentioned so far, the settling time
to the leader following manner is infinity. [17] and [18]
propose the finite time leader following algorithm in which
the settling time is upper bounded by a estimation. [19]
introduces the specified-time synchronization control for the
leaderless MASs in which one can determine the settling
time exactly in advance.

Statement of contributions: The objective of this paper is
to design a leader-follower algorithm, which steers a group
of follower agents with LTI dynamics to be at the sampled
states of a leader agent at finite specified times. We make
no assumptions about the structural form of the leader’s
dynamics or its input. The sampled states of the leader can
be the states of a physical system or a set of desired reference
states of a virtual leader. We assume that the only information
available about the dynamics of the leader is its sampled
states, which is known only to a subset of the followers at
the sampling times. Inspired by the classical optimal control
results, we propose a distributed minimum energy control
strategy to solve the leader-follower problem for networks
that the interaction topology of the followers plus the leader
is an acyclic digraph with the leader as the global sink. This
algorithm not only results in a leader-following behavior,
but also it makes the states and inputs of the agents to
become fully synchronized after the first sampling epoch.
We demonstrate the effectiveness of our proposed leader-
follower algorithm for two application examples for mobile
agents. In the first example, we show the application of
our proposed algorithm in a leader-following task under a
specific formation structure for a group of unicycle robots.
In this example, the leader’s dynamics is nonlinear while

solmazsajjadikia
Typewritten Text
Appeared in ECC 2019



0

1

2

3

4

5

6

7

8

910

Fig. 1: A leader-follower network. The interaction topology
of the follower agents, G, shown via the network with solid
edges, is an acyclic digraph. Agent 0 is the leader. The edges
of Gl is shown by the dashed arrow. Here, the leader is the
global sink of the G ∪ Gl, therefore, its information reaches
all the agents in an explicit or implicit manner.

the dynamics of the followers are feedback linearized. In the
second example, we demonstrate the use of our algorithm for
reference state tracking via a group of second order integrator
followers with bounded control. Using the intrinsic properties
of our leader-following algorithm, in this example, we show
that the arrival times at the reference states can be designed
in such a way that the inputs of the agents stay within the
pre-specified saturation bounds.

Organization: The rest of this parer is organized as fol-
lows. Section II gathers basic notation and graph-theoretic
terminology and notions. Section III formulates the leader-
follower problem of a group of homogeneous LTI followers
with an active non-homogeneous leader. Section IV pro-
poses our distributed leader-follower algorithm. Section V
demonstrates our results using two numerical application
examples. Section VI concludes the results of this paper.
Due to the space limitations, the proofs are omitted and will
appear elsewhere.

II. NOTATIONS AND PRELIMINARIES

Notation: We let R, R>0, R≥0, Z, and Z≥0 denote the set
of real, positive real, non-negative real, integer, and non-
negative integer numbers, respectively. The transpose of a
matrix A ∈ Rn×m is A>.

Graph theoretic notations and definitions: Here we review
our graph related notations and relevant definitions follow-
ing [20]. A digraph, is a triplet G = (V, E ,A), where
V = {1, . . . , N} is the node set and E ⊆ V × V is the edge
set, and A = [aij ] ∈ RN×N is the adjacency matrix of the
graph defined according to aij = 1 if (i, j) ∈ E and aij = 0,
otherwise. An edge (i, j) from i to j means that agent j can
send information to agent i (or equivalently, agent i can get
information from agent j). Here, i is called an in-neighbor
of j and j is called an out-neighbor of i. A directed path
is a sequence of nodes connected by edges. A directed path
that starts and ends at the same node and all other nodes
on the path are distinct is called a cycle. A digraph without
cycles is called directed acyclic graph. The out-degree of a
node i is diout = ΣNj=1aij . The out-degree matrix of a graph

is Dout = Diag(d1out, d
2
out, · · · , dNout). We denote the set of

in-neighbors of an agent i by N i
in and the out-neighbors of

agent i by N i
out. A node i ∈ V is called a global sink of G

if it outdegree diout = 0 and for every node j ∈ V there is a
path from j to i.

III. PROBLEM DEFINITION

In this section we formalize our problem of interest. We
consider a group of N MAS whose dynamics is described by

ẋi(t) = Axi(t) + Bui(t), i ∈ V = {1, · · · , N}, (1)

where xi ∈ Rn is the state vector and ui ∈ Rm is the
control vector. These agents aim to follow a dynamic signal
x0(t) : R≥0 → Rn. This signal can be a dynamic reference
signal of a virtual leader or the state of an active physical
leader with nonlinear dynamics

ẋ0(t) = f0(x0(t),u0(t), t). (2)

in which the control vector u0 ∈ Rm0

is unknown. The
interaction topology between the follower agents is described
by a acyclic digraph, denoted by G. A subset of agents in
G has access to x0(t) at the sampling times tk, k ∈ Z≥0.
Throughout the paper we assume that Tk = tk+1−tk ∈ R>0

for any k ∈ Z≥0 with t0 = 0. Moreover, we let N 0
in be the

subset of the agents in G that are connected to the leader. We
let Gl be the digraph consisted of the leader and N 0

in and the
directed edges connecting N 0

in to the leader. In what follows,
we assume that the leader is the global sink of the G ∪ Gl,
so that its information reaches all the agents in an explicit
or implicit manner (see Fig. 1 for an example).

The objective of this paper is to design a distributed control
rule for the input vector ui(t) of each agent such that they
can cooperatively steer the group to be at the state x0(tk) of
the leader in time before the next sampling time tk+1, i.e.,

xi(tk+1) = x0(tk), i ∈ {1, . . . , N}.

Note that the agents have no information about the dynamics
that creates the sampled states x0(tk). Here, we assume that
agents’ dynamics (1) is controllable. Recall that if a linear
system is controllable, there always exists a control to move
the state of the system from any point in the state space to
any other point in finite time.

IV. MAIN RESULT

In this section, we develop a novel distributed solution to
solve the leader-follower problem stated in Section III. We
start by using a classical optimal control result to make the
following statement. To present this result, we recall that

G(t) =

∫ t

0

eA(t−τ) BB> eA
>(t−τ)dτ, (3)

is the controllability Gramian of (A,B) for any finite time
t ∈ R>0. Since (A,B) is controllable, G(t) is full rank and
invertible at each time t ∈ R>0.



Lemma IV.1. Consider a leader-follower problem where
each agent’ dynamics is given by (1). Suppose i is a follower
agent in G that has access to x0(t) of the leader at each
sampling time tk, k ∈ Z≥0, i.e., i ∈ N 0

in. Starting at an initial
condition xi(t0) ∈ Rm and ui(t0) = 0, for any i ∈ N 0

in let

ui(t) = B> eA
>(tk+1−t) G−1k (x0(tk)− eATk xi(tk)),

t ∈ (tk, tk+1], (4)

where Tk = tk+1 − tk ∈ R>0, and

Gk = G(Tk) =

∫ Tk

0

eA(Tk−τ) BB> eA
>(Tk−τ)dτ. (5)

Then, for every i ∈ N 0
in we have xi(tk+1) = x0(tk) for

all k ∈ Z≥0. Moreover, at each time interval [tk, tk+1], the
control input ui(t) of i ∈ N 0

in satisfies

ui(t) = argmin

∫ tk+1

tk

ui(τ)>ui(τ)dτ, s.t. (6a)

ẋi(t) = Axi(t) + Bui(t), (6b)

xi(tk) = xi(tk), xi(tk+1) = x0(tk). (6c)

Proof: The proof follows from the classical finite time
minimum energy optimal control design [21, page 138].

Recall here that Gk in (3) is the controllability Gramian
of (A,B). Since (A,B) is controllable, the matrix Gk is
invertible.

Inspired with the classical optimal control result in
Lemma IV.1, in the following we propose a distributed
cooperative control law that allows follower agents which
do not have direct access to the leader’s sampled state to
also satisfy

xi(tk+1) = x0(tk), i ∈ {1, . . . , N}.

To present our results we first introduce some notations. We
denote the adjacency matrix and out-degree matrix of the
followers’ interaction topology G, respectively, by A = [aij ]
and Dout = Diag(d1out, d

2
out, · · · , dNout). We let

1 i =

{
1, i ∈ N 0

in,

0, otherwise,
(7)

be the indicator operator that defines the state of connectivity
of agent i of G to the leader. We also define

Ḡk(t) =

∫ t

tk

eA(t−τ) BB> eA
>(tk+1−τ)dτ, t ∈ [tk, tk+1].

(8)

We notice that Ḡk(t) = G(t− tk)eA
>(tk+1−t), where G is

the controllability gramian (3). Therefore at each finite time
t ∈ (tk, tk+1], by virtue of controllability of (A,B), Ḡk(t)
is invertible.

With the proper notations at hand, we present our distributed
solution to solve our leader-follower problem of interest as
follows.

Theorem IV.1. Consider a leader-follower problem where
the follower agents’ dynamics are given by (1). Suppose

the leader’s time-varying state is x0 : R≥0 → Rn. Let the
network topology be such that G∪Gl an acyclic digraph with
0 as the global sink. Suppose every follower agent i ∈ N 0

in
has access to x0(t) at each sampling time tk, k ∈ Z≥0.
Let P(t) = Ḡ

−1
k (t) for t ∈ (tk, tk+1]. Starting at an initial

condition xi(t0) ∈ Rn and ui(t0) = 0, let for t ∈ (tk, tk+1]

ui(t) =ωl

(
B>eA

>(tk+1−t) G−1k (x0(tk)−eATk xi(tk))
)
+

ωf

(
B> eA

>(tk+1−t) P(t)×
N∑
j=1

aij(x
j(t)− eA(t−tk) xj(tk))+ (9)

B>eA
>(tk+1−t) G−1k eATk

N∑
j=1

aij(x
j(tk)−xi(tk))

)
,

where ωl = 1 i

1 i+diout
, ωf = 1

1 i+diout
. Then, the followings

hold for t ∈ R≥0 and k ∈ Z≥0:

(a) xi(tk+1) = x0(tk), i ∈ {1, . . . , N};

(b) the trajectory of every follower i ∈ {1, . . . , N} is

xi(t)= eA(t−tk)xi(tk)+Ḡk(t)G−1k (x0(tk)−eATk xi(tk));
(10)

(c) the control input ui(t) of every agent i ∈ {1, . . . , N}
is equal to (4).

In the following, we give several remarks regarding the
structural properties of the leader-follower algorithm of The-
orem IV.1. First, it is worth to note here the interesting
synchronization property that the leader-follower algorithm
described in Theorem IV.1 has.

Corollary IV.1 (Followers’ synchronization). Consider the
Leader-follower interaction described in Theorem IV.1. Then,
xi(t) = xj(t) for t ∈ [t1,∞) and ui(t) = uj(t) for t ∈
(t1,∞), for every i, j ∈ {1, . . . , N}. Moreover, if xi(0) =
x0 ∈ Rn for all i ∈ {1, . . . , N}, then these equalities also
hold for t ∈ [0, t1] �

Next we observe the following minimum energy control
property which follows from the statement (c) of Theo-
rem IV.1 and the classical result in Lemma IV.1.

Corollary IV.2 (Minimum energy control in [tk, tk+1]).
Consider the Leader-follower interaction described in Theo-
rem IV.1. Then, at each time interval [tk, tk+1], k ∈ Z≥0, the
control input ui of each follower agent i ∈ {1, . . . , N} is the
minimum energy controller that transfers the agent from its
current state x(tk) to their desired state x(tk+1) = x0(tk).
�

Remark IV.1 (Robustness to state perturbations). We also
observe that the leader-follower algorithm of Theorem IV.1
has robustness to perturbations similar to the well-known
Model Predictive Control (MPC). Even though the controller
implemented in each epoch (tk, tk+1] is an open-loop con-
trol, since every agent inputs its state at time tk as initial
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Fig. 2: Interaction topology of the leader-follower problem
of Section V-A. Agent 0 is the leader.

condition to the controller, the algorithm can account for the
slight perturbations in the agents final state xi(tk+1) at the
end of each epoch. �

Remark IV.2 (Tracking a priori known desired states with
zero delay and design of arrival times). Finally, we note that
if the leader is virtual and the sampled states are some desired
states that are known a priori to N 0

i with desired arrival time
in R>0, there will be no delay in tracking the leader’s states.
Furthermore, in cases that the arrival times is not specified
one of the agents in N 0

i (we refer to it as supper node) can
design these arrival times to meet other optimality conditions
or to avoid violating constraints such as input saturation. In
case of input saturation, the fact that by virtue of statement
(c) of Theorem IV.1 the form of input vector of the follower
agents are known to be (4) can be instrumental to the supper
node in design of arrival times. Our second demonstrative
example in the proceeding section offers the details. �

V. DEMONSTRATIVE EXAMPLES

In this section, we demonstrate use of our proposed algorithm
in Theorem IV.1 in solving two leader-follower problems for
mobile agents.

A. A leader tracking problem for a group of unicycle robots

In this demonstrative example, we use our leader-follower al-
gorithm of Theorem IV.1 to solve a leader-follower problem
for a group of unicycle robots

ẋi = vi cos θi,

ẏi = vi sin θi,

θ̇i = ωi,

i ∈ {0, 1, 2, 3, 4}, (11)

where vi ∈ R and ωi ∈ R are linear velocity and angular
velocity of each agent i, respectively. Here, agents V =
{1, 2, 3, 4} are the follower agents, and agent 0 is the leader
robot which moves with a known constant linear velocity
of v0 = 100 (m/min) but unknown angular velocity ω0.
The interaction topology of the agents is shown in Fig. 2.
Agent 1 obtains the states of the leader with a sampling
rate of 2 per minute, i.e., Tk = 0.5 minutes, k ∈ Z≥0.
The followers start at x1(0) = [−30 − 30 0]>, x2(0) =
[−70 − 30 0]>, x3(0) = [−70 − 70 0]>, x4(0) =
[−30 − 70 0]> in a rectangular formation. The follower
team wants to follow the leader in a rectangle formation that
preserves the initial vertical and horizontal relative distances
of the agents. To satisfy this objective, we first feedback

Fig. 3: The trajectories of the leader and the followers in the
first numerical example.

Fig. 4: The linearization procedure of unicycle.

linearize the dynamics of the followers and then implement
our proposed leader-follower algorithm of Theorem IV.1 as
described below. The results of implementing our leader-
follower algorithm is shown in Fig. 3. The ‘×’ represents
the sampled leader positions and the gray window shows the
resulting formation of the followers at the sampling times.

It is well known that the unicycle dynamics is feedback
linearizable. The linearization procedure is described in [22]
and is shown in Fig. 4. For each follower agent i ∈
{1, 2, 3, 4}, the feedback linearized dynamics consists of two
decoupled second-order integral systems of

żi1
żi2
żi3
żi4

 =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0


︸ ︷︷ ︸

A


zi1
zi2
zi3
zi4

+


0 0
1 0
0 0
0 1


︸ ︷︷ ︸

B

[
ui1
ui2

]
, (12)

with the changing variable

zi1 = xi,

zi2 = vi cos θi,

zi3 = yi,

zi4 = vi sin θi.

(13)

The resulting dynamic compensator of each follower agent



i ∈ {1, 2, 3, 4} is

η̇i = ui1 cos θi + ui2 sin θi, ηi(0) ∈ R,
vi = ηi,

ωi =
ui2 cos θi − ui1 sin θi

ηi
.

(14)

To follow the states of the leader, we
assume that agent 1 constructs z0(tk) =[
x0(tk) v0 cos(θ(tk)) y0(tk) v0 sin(θ(tk))

]>
from the leader’s sampled state vector x0(tk) =[
x0(tk) y0(tk) θ0(tk)

]>
. The follower agents share

their feedback linearized states zi. The follower agents
use (9) to obtain ui ∈ R2, i ∈ {1, 2, 3, 4}, of (12). Then,
they obtain their inputs (vi, ωi), i ∈ {1, 2, 3, 4}, from (14).
Here, we note that the leaders dynamics is nonlinear and
is not required to be feedback linearized. Given the initial
location of the agents in Fig. 2, to preserve the initial
rectangular formation at every t = tk, the desired state of
agent i is an offset with respect to the state of agent j ∈ N i

out.
We define the offset parameter pij ∈ R4 as the desired state
offset of agent i at t = tk with respect to agent j ∈ N i

out.
We set that the followers want to keep the sampled
leader’s states x0(tk) in the center of their rectangular
formations at every t = tk+1. Thereby, the offset parameters
are p10 = [20 0 20 0]>, p21 = [−40 0 0 0]>,
p32 = [0 0 − 40 0]> and p43 = [40 0 0 0]>.
Then, xi(tk) = xj(tk) + pij , j ∈ N i

out, is achieved by
adding the term B> eA

>(tk+1−t) G−1k pij to the control (9).
One can easily verify the validity of this approach in a
similar way to the proof of Theorem IV.1. The details are
omitted for brevity.

B. Reference state tracking for a group of second integrator
dynamics with bounded inputs

We consider a group of 6 agents with second order integrator
dynamics

ẋi =

[
0 1
0 0

]
︸ ︷︷ ︸

A

xi +

[
0
1

]
︸︷︷︸
B

ui, −5 ≤ ui ≤ 5, (15)

for i ∈ {1, . . . , 6}. The interaction topology of these agents
is shown in Fig. 5, where, agent 0 is the virtual leader
that is defined more precisely below. Starting at initial
conditions x1(0) = [0 0]>, x2(0) = [2 0]>, x3(0) =
[−2 0]>, x4(0) = [5 0]>, x5(0) = [10 0]>, x6(0) =
[−10 0]>, the leader-follower mission for this team is
to traverse through the sequence of desired states xd =

{xd
1,x

d
2,x

d
3,x

d
4} =

{[
50
10

]
,

[
−50
10

]
,

[
20
10

]
,

[
0
0

]}
, which for

privacy reason are only known to agent 1. The objective is
to meet the sequence of desired states without violating any
of the agents’ control bounds.

In this problem setting, agent 1 is a supper node that also
knows the initial starting state of all the followers in the team
and has computational power to compute the arrival times to
meet the team’s objective as follows:

01

2

3

4

5

6

Fig. 5: Interaction topology with 6 agents. Agent 0 is the
virtual leader.

• We note that by virtue of statement (c) of Theorem IV.1
the form of input vector of the follower agents are
known to be (4). Since agent 1 knows xi(t0) for i ∈ V ,
agent 1 can evaluate ui(t) of all the agents. Starting with
td0 = 0, agent 1 computes the arrival time at desired state
xd
1 from the process below

td,i1 = argmin

∫ td,i
1

td
0

dτ, s.t. (16a)

− 5 ≤ ui(t) ≤ 5, (16b)

where ui(t) = B> eA
>(td,i

1 −t) G−10 (xd
0 − eAT0 xi(0))

with T0 = td,i1 − td0. Then, the arrival time so that the
agents input do not saturate over (td0, t

d,i
1 ] is set to td1 =

max{td,i1 }.
• Due to Corollary IV.1, after first epoch, the agents inputs

are equal to each other. Then, the remaining arrival time
tdl , l ∈ {2, 3, 4}. Agent 1 computes these desired times
from the optimization problem

tdk+1 = argmin

∫ td
k+1

td
k

dτ, s.t. (17a)

− 5 ≤ u(t) ≤ 5, (17b)

where u(t) = B> eA
>(td

k+1−t) G−1k (xd
k+1 − eATk xd

k)
with Tk = tdk+1 − tdk, for k ∈ {1, 2, 3}.

The solution for this set of sequential optimal control prob-
lem is td1 = 6.7178, td2 = 25.2061, td3 = 30.1592 and
td4 = 40.4885 seconds. Finally, agent 1 broadcasts the desired
arrival times to the network. Broadcasting the reference states
is not allowed due to privacy reasons. We note that these
processes can be done offline. To match the notation in (9),
at the implantation stage, we set x0(tk−1) = xd

k, Tk−1 =
tdk − tdk−1, and tk = tk−1 + Tk−1, k ∈ {1, . . . , 4}, where
td0 = 0. Figures 6 and 7 show all of the agents are going
to achieve the reference states at the specified arrival times
without delay. The ‘×’ in the figures marks the reference
states. Figure 8 shows the control history of the agents. As
seen the control inputs respect the saturation bounds 5 or −5.
We can also observe that the followers’ states and inputs, as
predicted in Corollary IV.1, are all synchronized after the
first epoch.

VI. CONCLUSION

In this paper, we have proposed a distributed leader-follower
algorithm for multi-agent systems with an active leader with
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Fig. 6: The trajectories of xi1, i ∈ {1, . . . , N}, in the second
numerical example.

0 10 20 30 40 50

time (s)

-15

-10

-5

0

5

10

15

20

Follower1

Follower2

Follower3

Follower4

Follower5

Follower6

Fig. 7: The trajectories of xi2, i ∈ {1, . . . , N}, in the second
numerical example.

unknown input. We have proved that our distributed leader-
follower algorithm for the linear followers steers the group to
be at the sampled states of the leader at the specified arrival
times. We showed that the control input of each follower
agent between the sampling times is a minimum energy
control. We also showed that after the first sampling epoch,
the states of all the follower agents are synchronized with
each other. We demonstrated the application of our proposed
algorithm for two leader-follower problems of mobile agents.
Our future work includes extending our proposed algorithm
to a heterogeneous group of follower agents and also output
tracking.
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