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Abstract— This paper examines accelerating the well-known
Laplacian average consensus algorithm by breaking its conven-
tional delay-free input into two weighted parts and replacing
one of these parts by an outdated feedback. We determine for
what weighted sum there exists a range of time delay that
leads to increase in the rate of convergence of the algorithm.
For such weights, using the Lambert W function, we obtain the
rate increasing range of the time delay and also the maximum
reachable rate and its corresponding maximizer delay. We also
specify what combinations of the current and an outdated
feedback increase the rate of convergence without increasing
the control effort of the agents. Lastly, we determine the
optimum combination of the current and the outdated feedback
weights to achieve maximum increase in the rate of convergence
without increasing the control effort. We demonstrate our
results through a numerical example.

I. INTRODUCTION

In a network of N agents each endowed with a constant ref-
erence input ri ∈ R, the average consensus problem consists
of designing a distributed inter-neighbor interaction policy
for each agent i ∈ {1, . . . , N} such that a local agreement
state xi asymptotically converges to 1

N

∑N
j=1 r

j . The solution
to this problem is of significance in various multi-agent
applications such as sensor fusion [1]–[3], robot coordina-
tion [4], formation control [5] and distributed estimation [6].
The widely adopted distributed solution for this problem is
the simple Laplacian algorithm [7]–[10]. In this algorithm,
each agent initializes its local first order integrator dynamics
with its local reference value and uses the sum of weighted
difference between its local state and those of its neighbors as
the input to drive its dynamics. Accelerating the convergence
of this algorithm results in fast agreement in the network
and is of prime interest in practice. For a connected network
with undirected communication, it is well understood that
the rate of convergence of the Laplacian average consensus
algorithm is defined by the smallest non-zero eigenvalue
of the Laplacian matrix [7], which is also a measure of
connectivity of the graph [11]. Given this connection, various
efforts such as optimal adjacency weight selection for a given
topology by maximizing the smallest non-zero eigenvalue of
the Laplacian matrix [9], [12] or rewiring the graph to create
topologies such as small world network [13], [14], which are
known to have high connectivity, have been proposed in the
literature. In this paper, we take a different approach, and aim
to exploit time delayed feedback to improve the convergence
of the average consensus algorithm without increasing the
control effort over a given network topology. Our method can
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be applied in conjunction with topology designs to maximize
the effect.

Intuition links time delay in dynamical systems to sluggish-
ness in system performance. However, some literature points
to the positive effect of time delay on increasing stability
margin and rate of convergence of time-delayed systems, see
e.g., [15]–[22]. In particular, the evidence of positive effect of
time-delayed feedback on increasing the rate of convergence
of Laplacian dynamics is presented in [18], [22]. In [22],
the increase of rate of convergence in a Laplacian average
consensus algorithm that uses only an out-dated feedback is
demonstrated, but without characterizing the effect of delay
on the control effort. In [18] combination of current and
out-dated feedback is utilized to increase the convergence
rate. However, the size of current and out-dated feedback
are considered equal which restricts the benefits of exploiting
out-dated feedback.

Here, we introduce a gain in the outdated feedback of
the Laplacian average consensus algorithm and examine
thoroughly its effect to obtain a specific range of delay
such that higher rate of convergence is achieved without
increasing the control effort of the agents.We describe in
full the convergence rate in terms of Lambert W function.
The exact value of the rate of convergence of time-delayed
LTI systems is specified in [23]–[25] using the Lambert W
function. By relying on this result and the properties of the
Lambert W function (see [26], [27]), we start our study by
characterizing fully the variation of the rate of convergence
of a scalar system with delay. Our results specify (a) for
what values of the system parameters the rate of convergence
in the presence of delay can increase, (b) the exact values
of delay for which the rate of convergence increases, and
(c) the optimum value of τ corresponding to the maximum
rate of convergence in the presence of delay. Next, we
apply our results to analyze the positive effect of adding
an outdated disagreement feedback to accelerate the rate of
convergence of the Laplacian average consensus algorithm.
Unlike the method of [18], our technique allows adding a
gain to the outdated disagreement feedback to study the
effect of the relative size of the outdated and immediate
feedback terms. Then, we determine for what values of the
outdated feedback gain, the average consensus algorithm
can have a higher rate of convergence in the presence of
time delay. We also determine a specific region for the gain
such that the maximum control effort by the agents does not
increase but the convergence rate improves. We show that the
optimum value of gain is determined by considering a trade-
off between the performance (maximum convergence rate)
and the robustness of the algorithm. Due to space limitation,
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for some of our results we only provide a sketch of the proof.
The Complete proofs will appear elsewhere.

II. NOTATIONS AND PRELIMINARIES

We let R, R>0, R≥0, Z, and C denote the set of real,
positive real, non-negative real, integer, and complex num-
bers, respectively. For s ∈ C, Re(s), Im(s) represent its
real and imaginary parts, respectively. Moreover, |s| =√

Re(s)2 + Im(s)2 and arg(s) = atan2(Im(s),Re(s)). For
a measurable locally essentially bounded function u :
R≥0 → Rm, we define |u|∞ = sup{‖u(t)‖∞, t ≥ 0}.
For a matrix A, its ith row is denoted by [A]i.

Lambert W function specifies the solutions of s es = z for a
given z ∈ C, i.e., s = W (z). It is a multivalued function with
infinite number of solutions denoted by Wk(z), k ∈ Z, where
Wk is called the kth branch of W function. For any z ∈ C,
Wk(z) can readily be evaluated in Matlab or Mathematica.
Below are some of the natural properties of the Lambert W
function, which we use (see [26], [27]),

lim
z→0

Wk(z)/z = 1, (1a)

dWk(z)/d z = 1/(z + eWk(z)), for z 6= 1/ e, (1b)

for k ∈ Z. For any z ∈R, the value of all the branches of
the Lambert W function except for the branch 0 and the
branch −1 are complex, i.e., they have non-zero imaginary
part. Moreover, the zero branch satisfies W0(−1/ e) =−1,
W0(0)=0 (see Fig. 1) and

W0(z) ∈ R, z ∈ [−1/ e,∞), (2a)
Im(W0(z)) ∈ (−π, π)\{0}, z ∈ C\[−1/ e,∞), (2b)
Re(W0(z)) > −1, z ∈ R\{−1/ e}, (2c)

Lemma 2.1 (Maximum real part of Lambert W func-
tion [26]): For any z ∈ C, the following holds

Re(W0(z)) ≥ max
{

Re(Wk(z))| k ∈ Z\{0}
}
. (3)

The equality holds between branch 0 and −1 over z ∈
(−∞,− 1

e ) where we have Re(W0(z)) = Re(W−1(z)). �

Lemma 2.2 (W0(x) is an increasing function of x ∈ R>0):
For any x, y ∈ R>0 if x < y, then W0(x) < W0(y).

Proof: The proof follows from the fact that for x ∈
R>0, W0(x) ∈ R>0. Therefore, dW0(x)

d x = 1
x+eW0(x) > 0.

We follow [28] to define our graph related terminologies
and notations. In a network of N agents, we model the inter-
agent interaction topology by the undirected connected graph
G(V, E ,A) where V = {1, · · · , N} is the node set, E ⊂
V ×V is the edge set and A = [aij ] is the adjacency matrix
of the graph. Recall that aii = 0, aij ∈ R>0 if j ∈ V
can send information to agent i ∈ V , and zero otherwise.
Moreover, a graph is undirected if the connection between
the nodes is bidirectional and aij = aji if (i, j) ∈ E . Finally,
an undirected graph is connected if there is a path from every
agent to every other agent in the network (see e.g. Fig. 2).
L = Diag(A1N ) − A is the Laplacian matrix of the graph

Fig. 1: The solid thick line shows 0 branch while the thin dashed
lines show the other branches in k={−5,−4, · · · , 4, 5} (some of
the branches overlap).

12

5

3

4 L=


4 −1 −1 −1 −1
−1 3 −1 0 −1
−1 −1 3 −1 0
−1 0 −1 3 −1
−1 −1 0 −1 3

1 1

1

1 1

1

1
1

Fig. 2: A connected graph of 5 nodes.

G. The Laplacian matrix of a connected undirected graph is
a symmetric positive semi-definite matrix that has a simple
λ1 = 0 eigenvalue, and the rest of its eigenvalues satisfy
λ1 = 0 < λ2 ≤ · · · ≤ λN . Moreover, L1N = 0. Since
L of a connected undirected graph is a symmetric and real
matrix, its normalized eigenvectors v1 = 1√

N
1N , v2, · · · , vN

are mutually orthogonal. Moreover for

T =
[

1√
N

1N R
]
, R =

[
v2 · · · vN

]
(4)

we have T>LT = Λ = Diag(0, λ2, · · · , λN ).

III. PROBLEM DEFINITION

We consider the static average consensus problem over a
multi-agent system where the agreement dynamics of each
agent is given by ẋi(t) = ui with ui as the control input
of agent i ∈ V . When the graph topology G(V, E ,A) is an
undirected connected, the algorithm

ẋi(t)= ui = −α
∑N

j=1
aij(x

j(t)−xi(t)), xi(0) = ri,

(5)

for i ∈ V , α ∈ R>0, is proposed as a solution for the
average consensus algorithm, i.e., limt→∞ xi = xavg(0) =
1
N

∑N
j=1 r

j . The convergence of (5) is exponential with
the rate of convergence ρ0 = αλ2 (for details see [10]).
In this paper we alter algorithm (5) as follows (compact
representation),

ẋ(t) = −α (1− k) L x(t)− α kL x(t− τ), (6a)

xi(η) = φi(η) = 0 η ∈ [−τ, 0], i ∈ V, (6b)

for t ∈ R≥0, where k ∈ R/{0}; for k = 0 we recover the
original algorithm (5). Our objective in this paper is to show
that by splitting the disagreement feedback into a current
−α (1 − k) L x(t) and an out-dated −α (1 − k) L x(t − τ)



components, it is possible to increase the rate of convergence
without increasing the control effort. Specifically, we show
that for all k ∈ R>0 , there always exists a range of delay
(0, τ̃k) such that ρτ,k > ρ0 for any τ ∈ (0, τ̃k). Here ρτ,k is
the rate of convergence of the modified algorithm (6) in the
presence of delay for a given k ∈ R>0. We show however
that only for k ∈ (0, 1] we can guarantee |uτ,k|∞ ≤ |u0,0|∞,
for τ ∈ (0, τ̃k). In what follows, we also investigate what
the maximum value of ρτ,k and the corresponding maximizer
τ?k ∈ (0, τ̃k) are for a given k ∈ R>0.

For convenience in our study, we implement the change of
variable z(t) = T>(x(t)−xavg(0)1N ) (recall (4)) to write (6)
in the following equivalent form

ż1(t) = 0, z1(0) = 0, (7a)
żi(t)=−α(1− k)λi zi(t)− αkλizi(t− τ), (7b)

zi(0) = [T>x(0)]i, zi(η) = 0 η ∈ [−τ, 0), (7c)

for i ∈ {2, · · · , N}. Since (7) is a set of scalar dynamics, in
the proceeding section we develop a set of preliminary results
that characterize the effect of delay on a class of scalar time-
delayed systems with a structure similar to (7b). We then use
these results to carry out our main study in Section V.

IV. PRELIMINARIES: A SCALAR TIME-DELAYED SYSTEM

Consider the scalar linear time-delayed system

ẋ(t) = αx(t− τ) + β x(t), t ∈ R≥0, (8)
x(t) ∈ R, t ∈ [−τ, 0],

where state x(t) ∈ R at time t, τ ∈ R>0 denotes the time
delay and α ∈ R\{0} and β ∈ R are the known system
parameters satisfying α+ β < 0. For a given τ ∈ R>0, (8)
is exponentially stable with the rate of ρτ if and only if there
exists a cτ ∈ R>0 and an ρτ ∈ R>0 such that for the given
initial condition in (8) the solution satisfies

|x(t)| ≤ cτ e−ρτ t sup
t∈[−τ,0]

|x(t)|, t ∈ R≥0. (9)

For any given τ ∈ R>0, the exponential stability of sys-
tem (8) is guaranteed when all the roots of its characteristic
equation F(s)=s−α e−τ s−β = 0, which are specified by
(see [23])

{s ∈ C | s =
1

τ
Wk(α τ e−τβ) + β, k ∈ Z

}
(10)

are located strictly in the left hand side of the complex
plane [29]. The critical value of delay τ̄ ∈ R>0 beyond
which the system is unstable is obtained from the smallest
value of τ ∈ R>0 for which the rightmost root of the
characteristic equation is on the imaginary axis. Using this
approach the admissible delay range for delayed system (8)
is given as follows.

Theorem 4.1 (Admissible delay bound for (8) [29, Propo-
sition 3.15]): The following assertions hold for system (8)
with α ∈ R\{0} and α+ β < 0:

(a) For β ≤ −|α|, the system is exponentially stable
independent of the value of τ ∈ R≥0, i.e., τ̄ =∞.

(b) For α < −|β|, the system is exponentially stable if and
only if τ ∈ [0, τ̄) where

τ̄ =
arccos(−β

α )√
α2 − β2

. (11)

The tightest estimate of the rate of convergence of (8) is char-
acterized by the magnitude of the real part of the rightmost
root of its characteristic equation s = 1

τW0(α τ e−τβ) + β
(recall Lemma 2.1 and (2a)). That is (see [24, Corollary 1])

ρτ = −1

τ
Re(W0(α τ e−τβ))− β. (12)

To compare the rate of convergence (12) to the delay free
rate, we define the delay gain function

g(γ, x) =

{
1
x Re(W0(x eγ x)), x ∈ R\{0},
1, x = 0,

(13)

where x, γ ∈ R. Then, we write (12) as

ρτ = −(g(γ, x)α+ β) = −(g(γ, x)− γ)α (14)

where x = ατ and γ = −β
α . Note here that by invoking (1a),

we obtain

lim
τ→0

g(γ, ατ) = 1. (15)

Therefore, as expected, limτ→0 ρτ = ρ0, where

ρ0 = −(α+ β) = −(1− γ)α. (16)

Knowing α + β < 0, the continuity stability property
theorem [29, Proposition 3.1] guarantees existence of the
admissible range of delay [0, τ̄) for which the system (8)
is exponentially stable. Next, we show that for some subset
of the admissible delay range the delay gain g(γ, ατ) for
system (8) can be greater than 1, thus the delay results
in an increase in the rate of convergence. The next lemma
highlights some of the properties of the delay gain function
g(γ, x) (see Fig. 3).

Lemma 4.1 (Properties of g(γ, x)): The following asser-
tions hold for the delay gain function (13) with γ, x ∈ R:

(a) For any γ ∈ R we have limx→0 g(γ, x) = 1.
(b) For any γ > 1 and x ∈ R>0 we have g(γ, x) < γ.
(c) For any γ > 1 and x ∈ R>0, g(γ, x) is a strictly

increasing function of x.
(d) Let x ∈ (x̄, 0), where x̄ = arccos(γ)/

√
1− γ2. Then,

for any γ < 1 (respectively γ > 1) we have g(γ, x) > γ
(respectively g(γ, x) < γ).

(e) For any γ < 1 and x ∈ R<0, g(γ, x) is a strictly
decreasing function of x for any x ∈ [x?, 0) ⊂ (x̄, 0),
and a strictly increasing function of x for any x < x?,
where x? = 1

γW0(−γe ) when γ 6= 0 and x? = − 1
e when

γ = 0.
(f) For any γ < 1 and x ∈ R<0, the maximum value of

g(γ, x) occurs at x? = 1
γW0(−γe ) where g(γ, x?) =
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Fig. 3: The delay gain function for different values of x, γ.

−γ
W0(− γe ) when γ 6= 0, and at x? = − 1

e where g(γ, x?) =

e when γ = 0.
(g) For any γ < 1 and x ∈ R<0, g(γ, x) > 1 if and only if

x ∈ (x̃, 0) where x̃ is the unique solution of g(γ, x) = 1
in (x̄, 0).

The prove this lemma we invoke various properties of the
Lambert W function listed in Section II. The next theorem,
whose proof relies on the results of Lemma 4.1 characterizes
the effect of delay on the rate of convergence of system (8)
in terms of different values of α, β ∈ R, α 6= 0 satisfying
α+ β < 0.

Theorem 4.2 (Effect of delay on the rate of convergence
of delayed system (8)): Consider system (8) with α ∈
R\{0} and β ∈ R such that α + β < 0, whose rate of
convergence ρτ is specified by (14). Consider also the delay
gain function (13) with γ = −β

α and x = ατ . Then,

(a) for α > 0 and β < 0 the system (8) is exponentially sta-
ble for any τ ∈ R≥0. Moreover, the rate of convergence
decreases by increasing τ ∈ R≥0.

(b) for α < 0 and β ∈ R, ρτ > ρ0 if and only if
τ ∈ [0, τ̃) ⊂ [0, τ̄) where τ̃ is the unique solution of

g(γ, ατ) = 1 in (0, τ̄) and τ̄ is specified by

τ̄ = arccos(−β/α)/
√
α2 − β2. (17)

Moreover, ρτ is monotonically increasing (resp. de-
creasing) with τ for any τ ∈ [0, τ?) ⊂ [0, τ̄) (resp.
τ ∈ (τ?, τ̄) ⊂ [0, τ̄)), where τ? = − 1

βW0( β
α e ) when

β 6= 0 and τ? = − 1
α e when β = 0. Finally, the

maximum rate of convergence of ρ?τ = −(1+ 1
W0( β

α e )
)β

when β 6= 0 and ρ?τ = −α e when β = 0 is obtained at
τ = τ?.

To develop our main results in next section, we also invoke
the following result.

Lemma 4.2: (maximum value of the trajectory of (8) [30,
Theorem 2.10]) For the time delay system (8) and any τ ∈
(0, τ̄ ] with α, β ∈ R<0 the following holds

|x(t)|∞ = maxs∈[−τ,2τ ]|x(s)|. (18)

V. MAIN RESULT

In this section, we examine the convergence properties and
the stability conditions of the modified average consensus
algorithm (6) for all value of k ∈ R/{0}. Our focus is to
show that for any k ∈ R>0, there exists a range of delay for
which the convergence rate of algorithm (6) improves. Also,
we demonstrate that for any k ∈ (0, 1] higher convergence
rate is achieved without increasing the control effort. We
start our study by identifying the admissible range (values
of delay for which the stability of algorithm (6) is preserved).

Lemma 5.1 (Admissible rage of delay for internal stability
of algorithm (6) ): The following assertions hold for the
modified average consensus algorithm (6) over an undirected
connected graph:

(a) for k ≤ 0.5, the modified average consensus algo-
rithm (6) is stable. Moreover, under the stated initial
conditions, xi, i ∈ V , converges exponentially fast to
xavg(0) for any τ ∈ R≥0, i.e., τ̄ =∞.

(b) for k > 0.5, the modified average consensus algo-
rithm (6) is stable if and only if τ ∈ [0, τ̄), where

τ̄ = arccos(1− 1/k)/(|α|λN
√

2k− 1). (19)

Moreover, under the stated initial conditions, xi, i ∈ V ,
converges exponentially fast to xavg(0).

Proof: [Sketch of the proof] Given (7) as the equivalent
representation of algorithm (6), the proof can be obtained by
invoking the statements (a) and (b) of Theorem 4.1.

Recall that in the absence of the delay, the rate of conver-
gence of the average consensus algorithm (5) is ρ0 =αλ2. In
the admissible range of delay, using the modified average
consensus algorithm (6), the rate of convergence of the
algorithm is

ρτ = min{ρτ,i}Ni=2, (20)

ρτ,i = (kg(1− 1

k
,−kλiατ)+(1− k))αλi.



The following result uses the properties of the delay gain
function developed in Section IV to determine the range of
delay for which ρτ > αλ2 for a given k. We also identify the
optimum value of the delay τ? for which ρτ has its maximum
value, i.e., we identify the solution for

τ? = argmax
τ∈(0,τ̄)

ρτ = argmax
τ∈(0,τ̄)

min{ρτ,i}Ni=2. (21)

Here, to simplify the notation we wrote ρτ,k as ρτ . In
what follows, we let τ̄i be the critical delay value for zi
dynamics (7b), and

τ?i = argmax
τ∈(0,τ̄i)

ρτ,i,

τ̃i = {τ ∈ (0, τ̄i) | g(1− 1

k
,−kαλiτ))=1},

for i ∈ {2, · · · , N}. The next theorem examines the effect
of outdated feedback on the rate of convergence of modified
consensus algorithm (6) for different values of k ∈ R/{0}.

Theorem 5.1 (Effect of outdated feedback on the rate of
convergence of algorithm (6)): The following assertions hold
for the modified average consensus dynamics (6) over a
connected graph whose rate of convergence is specified
in (20):

(a) For k < 0 the rate of convergence of the consensus
algorithm (6) decreases by increasing τ ∈ R≥0.

(b) For k > 0, ρτ > ρ0 if and only if τ ∈ [0, τ̂) ⊂ [0, τ̄)
where τ̂ = min{τ̂i}Ni=2 with τ̂i = {τ ∈ R>0|ρτ,i = ρ0}
and satisfies τ̃N ≤ τ̂ ≤ min{τ̃2, τ̄}. Moreover, the opti-
mum time delay τ? corresponding to the maximum rate
of convergence of the consensus algorithm (6) satisfies
τ? ∈ [τ?N ,min{τ?2 , τ̂}], where τ?N = 1

α(1−k)λNW0( 1−k
k e )

and τ?2 = 1
α(1−k)λ2

W0( 1−k
k e ), and is given by τ? =

{τ ∈ [τ?N ,min{τ?2 , τ̂}] | ρτ,2 = min{ρτ,i}Ni=3}.
Proof: [Sketch of the proof] Recall (20), the proof of

part (a) follows from statement (a) of Theorem 4.2 . To prove
statement (b) note that for k > 0, because of the statement
(b) of Theorem 4.2 for each zi, i∈{2, · · · , N}, dynamics
(−αkλi<0) we have the guarantees that for τ ∈ (0, τ̃i)

ρτ,i=(kg(1− 1

k
,−kλiατ)+(1− k))αλi > ρ0,i ≥ ρ0.

Since g(1− 1
k ,−kλiατ) is a decreasing function of τ for any

τ ∈ (τ̃i, τ̄i) ⊂ (τ?i , τ̄i) (Recall Lemma 4.1), it follows that
for any τ ∈ [0, τ̂j) we have ρτ,j > ρ0 and for any τ ∈ [τ̂j , τ̄)
we have ρτ,j < ρ0. Also, note that the maximum value of
ρτ is attained at τ = τ? at which

min{ρτ,i}Ni=j = min{ρτ,i}j−1
i=2. (22)

Since λ2τ
? ≤ · · · ≤ λj−1τ

? and dg(1− 1
k ,−kαλiτ

?)/dτ > 0
for i ∈ {2, · · · , j−1}, we have g(1− 1

k ,−kαλj−1τ
?) ≥ g(1−

1
k ,−kαλj−2τ

?) ≥ · · · ≥ g(1 − 1
k ,−kαλ2τ

?). As a result, it
follows from (20) that at τ = τ? we have min{ρτ,i}j−1

i=2 =
ρτ,2.

Theorem 5.1 implies that for any k > 0 there exists a
range in (0, τ̄ ] in which faster response can be achieved

for the modified average consensus algorithm (6) relative to
the original one (5). Next, our goal is to specify values of
k ∈ R>0 for which maximum control effort of the agents
do not exceed the one for the delay free algorithm (5). The
next theorem demonstrates that for any k ∈ (0, 1] using the
outdated feedback does not increase the maximum control
effort while for k > 1 the maximum control effort is greater
than the one for the original algorithm (5).

Theorem 5.2 ( The maximum control effort for the algo-
rithm (6)): Let uτ,k(t) = ẋ(t) for the modified distributed
algorithm (6) with k ∈ R>0. Then, for any τ ∈ [0, τ̄ ],
where admissible delay bound τ is given in Lemma 5.1, the
following assertions hold for t ∈ R≥0:

(a) For k ∈ (0, 1] we have |uτ,k(t)|∞ ≤ |u0,0(t)|∞.
(b) For k > 1 we have |uτ,k(t)|∞ ≥ e(k−1)αλ2τ |u0,0(t)|∞.

Proof: [Sketch of the proof] Using the transformation
matrix (4), for the maximum control effort of algorithm (6)
we have

|uτ,k(t)|∞ = | − α (1− k) Λ z(t)− α kΛ z(t− τ)|∞
= αmax{|(1−k)λi zi(t) + kλi zi(t− τ)|∞}Ni=2.

(23)

Note that z1(t) = 0. Also, recalling (7b), for τ = 0 and any
i ∈ {2, · · · , N} we have zi(t) = e−λit zi(0), which gives
|u0,0(t)|∞ = |u0,0(0)|∞ = αmax{|λizi(0)|}Ni=2. The rest
of the proof of part (a) can be proceed by using Lemma 4.2
to show that |zi(t)|∞ = |zi(0)| which gives |uτ,k(t)|∞ ≤
α{|λizi(0)|}Ni=2. Recalling (23) for k > 1 we have
|uτ,k(2τ)| ≥ α(2k − 1) eα(k−1)λiτ max{|λizi(0)|}Ni=2 =
(2k − 1) eα(k−1)λ2τ |u0,0|∞. Knowing 2k − 1 ≥ 1 and
|uτ,k(t)|∞ ≥ |uτ,k(2τ)|∞ concludes statement (b).

VI. NUMERICAL EXAMPLE

Consider the modified average consensus algorithm (6) over
the graph depicted in Fig. 2. The rate of convergence ρτ of
this execution versus τ for feedback gain k ∈ {0, 0.5, 1, 1.5}
is shown in Fig. 4. As seen, for none-zero values of k the rate
of convergence first increases, and after reaching a maximum
value then it decreases with τ ∈ R>0, as mentioned in
Theorem 5.1 part (b). Moreover, as predicted in Theorem 5.1,
for any k ∈ {0.5, 1, 1.5}, there exists a range of τ for
which ρτ > ρ0. In addition, the maximum achievable rate
of convergence is larger for larger values of k (for k = 1.5
we have τ̃ = 0.14 and the maximum rate of convergence
ρ?τ ≈ 2ρ0 at τ? = 0.11). Figure 5 shows the maximum
control effort of algorithm (6) over time for τ = 0.1 and
k ∈ {0.5, 1, 1.5} and the delay free case of k = 0. For
k = 1.5 the maximum control effort exceeds the value for
the delay free case of k = 0. But, for k = 1 and k = 0.5
the maximum control effort is equal or less than the case
k = 0. These observations are in accordance with the results
in Theorem 5.2.
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Fig. 4: The rate of convergence ρτ of the modified average
consensus algorithm (6) over the graph in Fig. 2 for different values
of feedback gain k = 0 , k = 0.5, k = 1 and k = 1.5.
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Fig. 5: The maximum control effort executed by the algorithm (6)
over the graph in Fig. 2 for τ = 0.1 and different values of
feedback gain k = 0 , k = 0.5, k = 1 and k = 1.5.

VII. CONCLUSION

We analyzed the effect of a weighted outdated feedback in
increasing the rate of convergence of the Laplacian average
consensus algorithm. Our study produced a set of closed-
form expressions to specify the admissible delay range, the
delay range for which the system experiences increase in
its rate of convergence and the optimum value of delay
corresponding to the maximum rate of convergence. We
also studies for what ranges of the outdated disagreement
feedback gain the rate of convergence of the Laplacian
average consensus algorithm can increase without increasing
the control effort. To develop our results we used the Lambert
W function. Our future work includes investigating the role
of delayed feedback in increasing the rate of convergence of
other distributed algorithms for networked systems.
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