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Abstract— In this paper, we study the problem of privacy
preservation of the continuous-time Laplacian static average
consensus algorithm using additive perturbation signals. We
consider this problem over a strongly connected and weight-
balanced digraph. Starting from a local reference value, in
static average consensus algorithm each agent constantly com-
municates with its neighboring agents to update its local
state to compute the average of the reference values across
the network. Since every agent transmits its local reference
value to its in-neighbors, the reference value of the agents are
trivially disclosed. In this paper, we investigate the possibility of
preserving the privacy of the reference value of the agents by
adding admissible perturbation signals to the local dynamics
and the transmitted out signals of the agents. Admissible
additive perturbation signals are those signals that do not
perturb the final convergence point of the algorithm from the
average of the reference values of the agents. Our results show
that if an adversarial agent has access to the output of another
agent and all the input signals transmitted to that agent, the
adversary can discover the private reference value of that agent,
regardless of the perturbation signals. Otherwise, the privacy of
the agent can be preserved. We demonstrate our results through
a numerical example.

I. INTRODUCTION

In recent years, decentralized multi-agent cooperative oper-
ations have been proposed as effective solutions for some
of today’s important socio-economical challenges. However,
privacy preservation concerns sometimes play a discouraging
role in client participation in networked solutions in areas
such as smart grid, banking or healthcare applications, where
even though agents are willing to cooperate towards an
effective operating point for the whole group, they do not
want to release their local information. Motivated by the
demand for privacy preserving network solutions to promote
wider adoption of distributed operations in privacy sensitive
domains, in this paper, we consider the privacy preservation
problem in the distributed static average consensus problem.

In a network of agents each endowed with a local static
reference value, static average consensus problem consists
of designing a distributed algorithm that enables each agent
to asymptotically obtain the average of the static reference
values across the network. The solutions to this problem are
of interest in distributed computing, synchronization, esti-
mation problems and control of multi-agent cyber physical
systems. Static average consensus problem has been studied
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extensively in the literature (see e.g., [1], [2], [3], [4]). The
widely adopted distributed solution for the static average
consensus problem is the simple first order Laplacian al-
gorithm in which each agent initializes its local dynamics
with its local reference value and transmit this local value to
its neighboring agents. Therefore, the privacy of the agents
implementing this algorithm is trivially breached by sharing
their local reference value at the first step of the algorithm.
This paper studies the multi-agent static average consensus
problem under the requirement of the privacy preservation
of the agents’ local reference value against internal non-
cooperative and passive adversarial agents in the network.

Literature review: Privacy preservation solutions for the
average consensus problem have been investigated in the
literature mainly in the context of discrete-time consensus
algorithms over connected undirected graphs. The general
idea is to add perturbation signals to the transmitted out
signal of the agents. For example, in one of the early
privacy preserving schemes, Kefayati, Talebi and Khalaj [5]
proposed that each agent adds a random number generated
by zero-mean Gaussian processes to its initial condition.
This way the reference value of the agents is guaranteed to
stay private but the algorithm does not necessarily converge
to the anticipated value. Similarly, in recent years, Nozari,
Tallapragada and Cortes [6] also relied on adding zero mean
noises to protect the privacy of the agents. However, they
develop their noises according to a framework defined based
on the concept of differential privacy, which is initially
developed in the data science literature [7], [8], [9] and
[10]. In this framework, [6] characterizes the convergence
degradation and proposes an optimal noise in order to keep
a level of privacy to the agents while minimizing the rate
of convergence deterioration. To eliminate deviation from
desired convergence point, Manitara and Hadjicostis [11]
proposed to add a zero sum finite sequence of noises to
transmitted signal of each agent, and Mo and Murray [12]
proposed to add a zero sum infinite sequences. Because of the
zero sum condition on the perturbation signals, however [11]
and [12] show that the privacy of an agent can only be
preserved when the adversarial agent does not have access
to at least one of the signals transmitted to that agent.

Statement of contributions: In this paper we consider the
problem of privacy preservation of the continuous-time static
Laplacian average consensus algorithm over strongly con-
nected and weight-balanced digraphs. The previous work
reviewed above considers discrete-time algorithms over con-



nected undirected graphs. Instead of random noises, we use
continuous-time integrable additive perturbation signals to
disguise the local reference value of the agents. We carefully
examine the stability and convergence of the static average
consensus algorithm in the presence of the perturbation
signals to find necessary and also sufficient conditions on the
perturbation signals such that the integrity of the algorithm
is preserved, i.e., despite the perturbation signals the agents
still converge to the average of their reference values. In our
privacy preservation evaluation, we assume that adversarial
agents know the necessary conditions on the admissible per-
turbation signals. They can use this extra piece of information
to enhance their knowledge set to discover the private value
of the other agents. We show that if an adversarial agent has
access to all the signals transmitted into and out of an agent,
it can discover the local private value of that agent despite
the existence of the perturbation signals. We also construct
an observer that such an adversary can employ to obtain the
reference value. Our next contribution is to present a class
of admissible perturbation signals for which we can formally
guarantee that if the adversarial agent does not have access
to all the transmitted signals to an agent, it cannot obtain
uniquely the local value of that agent. Our final contribution
is identifying examples of graphs topologies in which the
privacy of all the agents are preserved when they implement
our proposed admissible additive perturbation signals. We
demonstrate our results through a numerical example. Due
to the space limitations, some of the proofs of our results
are omitted, and will appear elsewhere.

Notations and definitions: Let R, R≥0 and R>0, respectively,
be the set of real, nonnegative real and positive real numbers.
For a matrix A ∈ Rn×m, we denote its transpose matrix
by A>. We let 1n (resp. 0n) denote the vector of n ones
(resp. n zeros), and denote by In the n× n identity matrix.
When clear from the context, we do not specify the matrix
dimensions. We denote the standard Euclidean norm of
vector x ∈ Rn by ‖x‖ =

√
x>x. For sets A and B, the

relative complement of B in A is A\B = {x ∈ A |x 6∈ B}.
In a network of N agents, to distinguish and emphasis that a
variable is local to an agent i ∈ V , we use superscripts, e.g.,
f i(t) is the local function of agent i. Moreover, if pi ∈ R is
a variable of agent i ∈ V , the aggregated pi’s of the network
is the vector p = [{pi}Ni=1] = [p1, · · · , pN ]> ∈ RN . A
measurable function h is called integrable if

∫
|h|dµ ≤ ∞.

II. PROBLEM DEFINITION

Consider a set of N agents each with a reference value ri ∈
R, i ∈ V interacting over a strongly connected directed graph
(digraph) G(V, E ,A). Here, V = {1, · · · , N} is the node set,
E ⊆ V × V is the edge set and A = [aij ] is the weighted
adjacency matrix of the digraph which satisfies aij > 0
if (i, j) ∈ E and aij = 0 otherwise. For graph theoretic
definitions, terminologies and properties we follow [13].
Accordingly, in our developments below, an edge from i to
j, denoted by (i, j), means that agent j can send information
to agent i. For an edge (i, j) ∈ E , i is called an in-neighbor
of j and j is called an out-neighbor of i. A digraph is called

strongly connected if there is a directed path from every node
to every other node in the digraph.

The objective in the static average consensus problem is
for the agents i ∈ V to asymptotically compute 1

N

∑N
i=1 r

i

by only interacting with their out-neighbors. A well-known
algorithm to arrive at the average consensus is based on
driving a simple integrator dynamics using the weighted sum
of the feedback of the difference between the local state of
an agent and its out-neighbors (c.f. [1]) i.e.,

ẋi(t) = −
∑N

j=1
aij (xi(t)− xj(t)), xi(0) = ri, (1)

The asymptotic convergence is guaranteed when the weights
aij of the algorithm are chosen such that the strongly
connected digraph is also weight-balanced. Recall that a
digraph is weight-balanced iff at each node i ∈ V , the
weighted out-degree diout =

∑N
j=1 aij and weighted in-

degree diin =
∑N
j=1 aji coincide (although they might be

different across different nodes). We consider a setting in
which agents do not fully trust each other. In this setting,
some of the agents in the network act as a passive adversarial
eavesdropper (see Fig. 1), which without interrupting the
execution of the algorithm (1), aim at obtaining the local
reference value ri of other agents i ∈ V by storing and
processing the time history of the communication messages
they receive. We assume that each adversary acts alone.
Because in (1) the private value ri of agent i is transmitted to
its in-neighbors, this algorithm trivially reveals the reference
value ri of each agent i ∈ V to all its in-neighbors. To
preserve privacy of the agents, one can propose to add
locally constructed perturbation signals f i(t) : R≥0 → R,
gi(t) : R≥0 → R to the local process and communication
message of an agent to disguise this private value, i. e.,
modify (1) as follows

ẋi(t) = −
∑N

j=1
aij (xi(t)−yj(t))+f i(t), xi(0)= ri, (2a)

yi(t) = xi(t) + gi(t). (2b)

where yi is the signal transmitted by agent i ∈ V . Here f i

and gi are assumed to be locally integrable, to guarantee ex-
istence and well-posedness of solutions of (2) (c.f. [14, page
30]). We refer to the set of perturbation signals {f i, gi}Ni=1

for which the integrity of the static average consensus algo-
rithm is preserved (i.e., xi(t)→ 1

N

∑N
j=1 x

j(0)= 1
N

∑N
j=1 r

j ,
i ∈ V , as t → ∞) as the admissible perturbation signals.
Our objective in this paper is (a) to identify such admissible
signals and (b) to analyze the privacy preservation properties
of the modified algorithm (2) employing such signals.

III. PRIVACY PRESERVATION THROUGH ADDITIVE
PERTURBATION SIGNALS

We start our study by obtaining a set of necessary and also
sufficient conditions on the class of admissible perturbation
signals f i and gi, i ∈ V . We write the modified static average
consensus algorithm in its compact form as

ẋ = −Lx− Lg + f + Dout g = −Lx + f + Ag, (3)



where L is the graph (out-) Laplacian defined according to
L = Dout − A, in which Dout = Diag(d1

out, · · · , dNout) ∈
RN×N , and A = [aij ] is the adjacency matrix of the interac-
tion topology. Here, recall that for a strongly connected and
weight-balanced digraphs, L has a simple zero eigenvalue
and the rest of eigenvalues have positive real parts. Moreover,
L1N = 0, 1>NL = 0 and rank(L) = N − 1. We denote
eigenvalues of L by {λi}Ni=1 and sort them such that λ1 = 0,
and Re(λi) ≤ Re(λj) for any i, j ∈ V and i < j.

Theorem 3.1 (integrity of (3) in the presence of pertur-
bation signals): Consider algorithm (2) over a strongly
connected and weight-balanced digraph. Let f i : R≥0 → R
and gi : R≥0 → R, i ∈ V , be locally integrable.

(a) Let f i and gi, i ∈ V , be such that xi(t)→ 1
N

∑N
j=1 r

j

as t→∞. Then, we should have

lim
t→∞

∫ t

0

∑N

i=1
(f i(τ) + diout g

i(τ)) dτ = 0. (4)

(b) Let f i and gi, i ∈ V be essentially bounded and van-
ishing signals that satisfy (4). Then, for any i ∈ V we
have xi(t)→ 1

N

∑N
j=1 x

j(0) = 1
N

∑N
j=1 r

j as t→∞.

Since in our privacy preservation framework, each agent
chooses its perturbation signal locally decide locally then
to ensure that the necessary condition (4) holds, each agent
i ∈ V should choose its admissible signals such that

lim
t→∞

∫ t

0

(f i(τ) + diout g
i(τ)) dτ = 0. (5)

Evidently, any adversarial agent is aware of the necessary
condition (5) and can use this knowledge to identify the
private reference value of the other agents. In our study, we
also assume that the adversary knows the network topology.

Assumption 1 (Knowledge set of the adversary): The
Knowledge set of the adversarial agent includes signals that
it receives from its out-neighbors, the adjacency matrix of the
network (network topology) and the necessary condition (5)
on the admissible perturbation signals f i and gi, i ∈ V .

From the perspective of an adversarial eavesdropper on an
agent i ∈ V the dynamical system to observe is (2), with
xi as the internal state of agent i, f i, gi, and {yj}j∈N i

out
,

as its inputs and yi as its output that can be measured
from tapping into the communication messages. Here, N i

out
is the set of out-neighbors of agent i ∈ V . Given a known
input and measured outputs over some finite time interval
(resp. infinite time), the traditional observability (resp. de-
tectability) tests (c.f. [15] and [16]). evaluate whether we
can uniquely identify the initial conditions of the system.
But here, the inputs f i and gi : R≥0 → R of agent i ∈ V
are not available to the adversary. However, it is reasonable to
presume that the adversary knows the necessary conditions
stated in Theorem 3.1 for admissible perturbation signals.
With regards to inputs {yj}j∈(N i

out∪{i}) an advertorial agent
has only access to these signals if it is an in-neighbor of
agent i and all the out-neighbors of agent i–see Fig. 1 for an
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Fig. 1: A strongly connected and weight-balanced digraph in
which agent 1 is the in-neighbor of all the out-neighbors of
its out-neighbors {3, 4, 5}. As a result, agent 1 has direct
access to the information transmitted to and from these
agents. However, agent 1 is not the in-neighbor of all the out-
neighbors of its out-neighbor 2, therefore it does not have
direct access to all the information transmitted to this agent,
specifically here the information from agent 6 to agent 2.

example. The following result shows that in such a scenario
the adversarial agent is able to identify the reference value
of the agent it is eavesdropping on despite the perturbation
signals. Hereafter, without loss of generality, we assume that
the adversarial agent is agent 1.

Theorem 3.2 (Observer design for an internal adversary):
Consider the modified static average consensus algorithm (2)
with a set of admissible signals {f i, gi}Ni=1 over a strongly
connected and weight-balanced digraph G. Let Assumption 1
hold and agent 1 be the internal adversary. Let agent 1 be
the in-neighbor of agent 2 and all the out-neighbors of agent
2. Then, agent 1 can employ the observer

˙̂x =
∑N

j=1
a2j(y

2 − yj), x̂(0) = 0, (6a)

ẑ(t) = x̂(t) + x1(t), (6b)

to asymptotically obtain r2, i.e., ẑ → r2 as t→∞. Moreover,
at any t ∈ R≥0, the tracking error of the observer satisfies

ẑ(t)− r2 = x1(t)− x2(t) +

∫ t

0

(f2(τ) + d2
out g

2(τ))dτ. �

In what follows, we investigate whether an adversarial agent
can recover the local reference value of an out-neighbor
of its when the adversary does not have access to all
the transmitted signals to that out-neighbor. In our study
hereafter, we assume that the admissible signals of every
agent i ∈ V are f i(t) = 0 for t ∈ R≥0 and gi as follows

q̇i(t) = hi(t), 0 6= qi(0)=−
∫ ∞

0

hi(t) dt=ci <∞, (7a)

ṗi(t) = −diout (pi(t) + qj(t)), pi(0) = 0, (7b)

gi(t) = pi(t) + qi(t), (7c)

lim
t→∞

hi(t) = 0. (7d)

where hi(t) : R≥0 → R is a bounded and continuous func-
tion chosen locally by agent i ∈ V . The next result shows that
{f i, gi}Ni=1 as described above are admissible perturbation
signals for modified static average consensus algorithm (2).



Lemma 3.1 (f i = 0 and gi given in (7) are admissible
signals for (2)): Consider the modified average consensus
algorithm (2) over a strongly connected and weight-balanced
digraph. For every i ∈ V , let f i = 0 for t ∈ R≥0 and gi

be given by (7), where hi is a bounded continuous function.
Then, we have xi(t)→ 1

N

∑N
j=1 r

j , as t→∞.

Proof: Our proof is based on showing that f i and
gi, i ∈ V satisfy the set of sufficient conditions that is
given in statement (b) of Theorem (3.1). Note that qi(t) =
qi(0) +

∫ t
0
hi(t) dt, t ∈ R≥0, which under the given qi(0),

indicates limt→∞ qi(t) = 0. Then, (7b) is an internally ex-
ponentially stable LTI system with a bounded and vanishing
external input signal qi(t). Therefore, the ISS analysis results
(c.f. [17, page 175]) guarantees that the trajectories of pi are
bounded and also satisfy limt→∞ pi(t) = 0. Thereby, gi(t) is
an essentially bounded and vanishing signal (limt→∞ gi(t) =
limt→∞(qi(t) + pi(t) = 0). To complete the proof, we need
to show that

∫∞
0

(f i(τ) + dioutg
i(τ))dτ = 0, which given

f i(t) = 0, simplifies to
∫∞

0
gi(τ)dτ = 0. In this regard note

that the differential equation describing gi(t) = pi(t)+ qi(t)
is given by ṗi(t)+ q̇i(t) = −diout (pi(t)+qj(t))+hi(t). The
solution of this differential equation is given by

pi(t)+qi(t) = e−d
i
out t(pi(0)+qi(0))+

∫ t

0

e−d
i
out (t−τ)hi(τ)dτ.

Therefore, we can write (recall the initial conditions of (7))∫ t

0

gi(τ)dτ=qi(0)

∫ t

0

e−d
i
out νdν+

∫ t

0

∫ ν

0

e−d
i
out (ν−τ)hi(τ)dτ dν

=
−1

diout

(

∫ ∞
0

hi(τ)dτ) (1− e−d
i
out t) +∫ t

0

e−d
i
out ν

∫ ν

0

ed
i
out τhi(τ)dτ dν. (8)

Using integration by parts, the second summand in the right
hand side of the equation above can be written as∫ t

0

e−d
i
out ν

∫ ν

0

ed
i
out τhi(τ)dτ dν =

−1

diout

e−d
i
out t

∫ t

0

ed
i
outτhi(τ)dτ −

∫ t

0

−1

diout

e−d
i
out νed

i
out νhi(ν) dν

=
−1

diout

ψ(t) +
1

diout

∫ t

0

hi(ν) dν. (9)

where ψ(t) = e−d
i
out t

∫ t
0

ed
i
out τhi(τ)dτ. Next, we show

limt→∞ ψ(t) = 0, by showing that

for ∀ε > 0, ∃T > 0 s.t if t > T then |ψ(t)| < ε.

Recall that hi is a continuous and bounded signal that
satisfies limt→∞ hi(t) = 0. Therefore, for every given ε ∈
R>0, there exists a t1 ∈ R>0 such that |hi(t)| < dioutε

2 . For
t > t1, we write ψ(t) as below

ψ(t) = e−d
i
out t

∫ t1

0

ed
i
out τhi(τ) dτ+

∫ t

t1

e−d
i
out (t−τ)hi(τ) dτ.

Because hi(t) is a bounded signal, we can write∣∣ ∫ t1
0

ed
i
out τhi(τ) dτ

∣∣ = ci <∞. Thus, we can conclude that

|ψ(t)| ≤ e−d
i
out tci +

∫ t

t1

e−d
i
out (t−τ)|h(τ)| dτ

≤ e−d
i
out tci +

dioutε

2

∫ t

t1

e−d
i
out (t−τ) dτ,

= e−d
i
out tci +

dioutε

2

1

diout

(1− e−d
i
out(t−t1)),

< e−d
i
out tci +

ε

2
, t > t1 > 0.

Because limt→∞ e−d
i
out t = 0, there exists a t2 ∈

R>0 such that e−d
i
out t < ε

2ci . Therefore, by taking
T > max{t1, t2} we conclude that |ψ(t)| < ε. Because
limt→∞ ψ(t) = 0, from (9) and (8) we can conclude
that limt→∞

∫ t
0
gi(τ) dτ = limt→∞(− 1

diout

∫ t
0
h(τ) dτ +

1
diout

∫ t
0
h(τ) dτ) = 0,, which concludes the proof.

Our next result considers an implementation of the modified
static average consensus algorithm (2) in which agents
choose their admissible perturbation signals according to
f i = 0 and gi in (7). We show that in this implementation
if an adversarial agent does not have direct access to all
the signals that are transmitted to any of its out-neighbors,
it cannot uniquely identify the initial condition of that out-
neighbor, i.e., the local reference value of that agent stays
private. In the developments below we denote the set of the
in-neighbors of an agent i ∈ V by N i

in.

Theorem 3.3 (Privacy preservation): Consider the modified
static average consensus algorithm (2) with a set of admissi-
ble signals {f i, gi}Ni=1 over a strongly connected and weight-
balanced digraph G. Let the admissible signals for i ∈ V be
f i = 0 and gi given in (7). Let Assumption 1 hold and agent
1 be the adversary. Let N 2,−1

out = (N 2
out\(N 1

out ∪ {1}) be the
set of the out-neighbors of agent 2 that are not out-neighbors
of agent 1. Let agent 2 be an out-neighbor of agent 1 for
which N 2,−1

out 6= {}. Then, agent 1 cannot uniquely identify
the reference value of agents 2 and N 2,−1

out , i.e., agent 1
cannot uniquely identify ri of i ∈ (N 2,−1

out ∪ {2}).

Proof: Given a set of reference inputs {ri}Ni=1, consider
‘the actual scenario’ in which algorithm (2) is driven by
xi(0) = ri, and admissible perturbation signals from the
set described in the statement. We represent the perturbation
signal gi by gi ∼ (qi(0), hi(t)), i ∈ V . To show that agent 1
cannot uniquely identify ri of i ∈ (N 2,−1

out ∪ {2}), we show
that there exist other sets of admissible perturbation signals
and initial conditions for agents 2 and any agent in N 2,−1

out
for which every agent i ∈ V still converges to 1

N

∑N
j=1 r

j

and also the output signal of every out-neighbor of agent 1 is
exactly the same as the corresponding signals in the actual
scenario. In the following, we show one of these possible
cases. Without loss of generality, assume that 3 ∈ N 2,−1

out .
Let N̄ = N 3

in∪{3} (note that 2 ∈ N̄ ). Next, let t 7→ x̄(t) be
trajectories of the modified average consensus algorithm (2),
initialized according to x̄i(0) = ri, i ∈ (V\N̄ ), and x̄j(0) ∈
R, j ∈ N̄ such that

∑
j∈N̄ x̄

j(0) =
∑
j∈N̄ rj , and admis-



sible perturbation signals {f̄ i ≡ 0, ḡi ∼ (q̄i(0), h̄i(t))}i∈V .
Since 1

N

∑N
j=1 x̄

j(0) = 1
N

∑N
j=1 r

j and we are using admis-
sible perturbations {f̄ i ≡ 0, ḡi∼(q̄i(0), h̄i(t))}i∈V , we have
x̄i(t) → 1

N

∑N
j=1 r

j , i ∈ V , as t → ∞. In this alternative
case we let every agent i ∈ (V\N̄ ) use the same admissible
perturbation signals f i ≡ 0 and gi ∼ (qi(0), hi(t)) as in
the actual scenario. Let eix(t) = xi(t) − x̄i(t), eiy(t) =
y(t)− ȳi(t), ēiq(0) = qi(0)− q̄i(0), and ēih = hi− h̄i, i ∈ V .
Note that ēiq(0) = 0 and ēih(t) ≡ 0 for i ∈ (V\N̄ ). Next,
we show that there exists admissible perturbation signals
{f̄ j ≡ 0, ḡj ∼ (q̄j(0), h̄j(t))}j∈N̄ for which the output
ȳk(t) = yk(t), k ∈ N 1

out, i.e., agent 1 cannot distinguish
between initial conditions xj(0) and x̄j(0), j ∈ N̄ . In
the proof below we use the fact that given a set of initial
conditions and integrable external signals, the solution of
any linear ordinary differential equation is unique.

Our choice of perturbation signals should also result in
eiy(t) = 0 for all t ∈ R≥0, for every i ∈ V\{3}. Let
q̄3(0) = q3(0) and h̄3(t) = h3(t), t ∈ R>0. Then, we have

ėix = −diout e
i
x, i ∈ (V\N 3

in) ∪ {3}), (10a)

ėjx = −djout e
j
x + aj3 e

3
x, j ∈ N 3

in. (10b)

For i ∈ V\N̄ , because eix(0) = 0, from (10a) we obtain
that eix(t) = 0, for all t ∈ R≥0. Then, because eig(t) = 0 for
t ∈ R≥0, our assumption of eiy(t) ≡ 0 for t ∈ R≥0 is correct
for i ∈ V\N̄ . Since N 1

out ⊂ ((V\N̄ ))∪{2}, what remains to
show is that e2

y ≡ 0 for all t ∈ R≥0. In what follows recall
that 2 ∈ N 3

in.

Because e3
x(0) 6= 0, from (10a) we obtain that

e3
x(t) = e−d

3
out t e3

x(0), t ∈ R≥0.

Let the admissible perturbation signals for the in-neighbors
of agent 3 be such that

h̄j(t) = hj(t)− aj3 e−d
3
out t e3

x(0), j ∈ N 3
in,

which gives

ejh(t) = −aj3 e−d
3
out t e3

x(0), t ∈ R≥0, j ∈ N 3
in,

For this signal from (7a) we have

ejq(0) =

∫ ∞
0

ejh(t)dt =
aj3
d3

out

e3
x(0), j ∈ N 3

in.

Moreover, we can write ėjq = −e−d
3
out t e3

x(0), for j ∈ N 3
in.

Note here that h̄j(t), j ∈ N 3
in, as defined above is admissible

because it is bounded and continuous function which satisfies
also limt→∞ h̄j(t) = 0. Define ejp = pi− p̄i. Then for every
agent j ∈ N 3

in we can write

ėjx + ėjp + ėjq =− djout (ejx + ejp + ejq)+

aj3 e
3
x − aj3 e−d

3
out t e3

x(0)

=− djout (ejx + ejp + ejq). (11)

For j ∈ N 3
in, let ejx(0) = − aj3

d3out
e3
x(0) so that ejx(0)+ejp(0)+

ejq(0) = 0. As a result from (11) we obtain for any agent
j ∈ N 3

in that ejy(t) = ejx(t) + ejp(t) + ejq(t) ≡ 0 for t ∈ R≥0.
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(a) An example of a cyclic bipartite
undirected connected graph.
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(b) A 4-regular ring lattice undirected
connected graph on 12 vertices.

Fig. 2: Examples of graphs in which privacy of all agents
implementing the modified static average consensus algo-
rithm (2) with admissible perturbation signals {f i ≡ 0, gi∼
(qi(0), hi(t))}i∈V is preserved.

To complete the proof, we show that the initial conditions de-
scribed above for the alternative case satisfy

∑
j∈N̄ x̄

j(0) =∑
j∈N̄ rj . For this note that∑

j∈N̄

ejx(0) = e3
x(0) +

∑
j∈N 3

in

ejx(0) = e3
x(0)−

∑
j∈N 3

in

aj3
d3

out

e3
x(0)

= e3
x(0)− d3

in

d3
out

e3
x(0) = e3

x(0)− e3
x(0) = 0.

Here, we used the fact that G is weight-balanced, therefore,
d3

out = d3
in =

∑
j∈N 3

in
aj3.

Undirected cyclic bipartite graphs and 4-regular ring lattice
undirected graphs with N > 5 are examples of network
topologies that satisfy the relation mentioned for the adver-
sarial node and its out-neighbors in Theorem 3.3 (see Fig. 2).
Therefore, the privacy of the agents in these graphs are
preserved when they implement the modified static average
consensus algorithm (2) with the admissible perturbation
signals {f i ≡ 0, gi∼(qi(0), hi(t))}i∈V .

IV. NUMERICAL EXAMPLE

We demonstrate our results using an execution of the modi-
fied static average consensus (2) over the strongly connected
and weight-balanced digraph in Fig. 3. Let the perturbation
signals be such that f i(t) ≡ 0 and gi(t) be defined according
to (7). The local reference value of the agents as well the hi

component of the the perturbation signal gi are specified in
Fig. 3. The adversarial agent here is agent 1, which wants
to obtain the reference values of its out-neighbors {2, 6, 5}.
In regards to agent 5, as guaranteed in Theorem 3.2, agent 1
can employ the observer (6) to obtain x5(0) = r5 = −3 (see
Fig. 4). Agent 1 however, cannot uniquely identify r2 and
agent r6, since each of these agents have out-neighbors that
are not out-neighbors of agent 1. To show this, consider an
alternative implementation of algorithm (2) with initial and
admissible perturbation signals

x̄1(0)=3, x̄2(0)=−2, x̄3(0)=9, x̄4(0)=−3, (12a)

x̄5(0)=−3, x̄6(0)=11, x̄7(0)=16, x̄8(0)=−3, (12b)
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r1(0) = 3, r2(0) = −1,
r3(0) = 7, r4(0) = −2,
r5(0) = −3, r6(0) = 10,

r7(0) = 15, r8(0) = −1,
hi(t) = 0.5i cos(0.5 i t) e−t,
i ∈ {1, . . . , 8}.

Fig. 3: A strongly connected and weight-balanced digraph G
in which node 1 is the adversarial agent.
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Fig. 4: Adversarial agent 1’s estimate of r5 using the observer
(6). As seen, the adversary recovers the reference value of
agent 5, i.e., x5(0) = r5 = −3.

h̄i(t) = hi(t), i ∈ {1, 3, 4, 5, 7, 8}, (12c)

h̄2(t) = h2(t)− 2.5e−2.5t, (12d)

h̄6 = h6(t) + 2t e−t − e−t, (12e)

where 1
8

∑8
i=1 x̄

i(0) = 1
8

∑8
i=1 x

i(0) = 1
8

∑8
i=1 r

i = 3.5.
As Fig. 5(a) shows the execution of algorithm (2) using
the initial conditions and perturbation signal specified in
Fig. 3 (actual case) and those in (12) (alternative case)
converges to the same final value of 3.5. Let eiy = yi − ȳi,
i ∈ {1, . . . , 8} be the error between the output of agents in
the actual and alternative cases. As Fig. 5(b) eiy ≡ 0 for all
i ∈ N 1

out = {2, 5, 6}. Therefore, agent 1 cannot distinguish
between these two cases.

V. CONCLUSIONS

In this paper, we considered the problem of preserving the
privacy of the reference value of the agents in an average
consensus algorithm using additive perturbation signals. We
started our study by characterizing the set of necessary
and sufficient conditions on admissible perturbation signals,
which do not perturb the final convergence point of the
algorithm. Then, we showed that despite employing additive
perturbation signals, if an adversarial agent in the network
has access to all the input and out signals of an agent, it can
employ an asymptotic observer to obtain the initial value
of the state equation of that agent, which is the reference
value of the agent. Our next contribution was to identify the
conditions under which an agent’s privacy is preserved. In
this paper, we only studied the problem of privacy preserva-
tion with respect to internal adversarial agents. Future work
will focus on studying privacy preservation with respect to
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(a) State trajectories of the agents
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(b) Output difference eiy = yi−ȳi,
i ∈ {1, . . . , 8}

Fig. 5: Simulation results for the execution of algorithm (2)
using the initial conditions and perturbation signal specified
in Fig. 3 (actual case) and those in (12) (alternative case).

external adversaries. We will also extend our results to other
multi-agent distributed algorithms such as dynamic average
consensus and distributed optimization algorithms.

REFERENCES

[1] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks
of agents with switching topology and time-delays,” IEEE Transac-
tions on Automatic Control, vol. 49, no. 9, pp. 1520–1533, 2004.

[2] W. Reb and R. W. Beard, “Consensus seeking in multi-agent systems
under dynamically changing interaction topologies,” IEEE Transac-
tions on Automatic Control, vol. 50, no. 5, pp. 655–661, 2005.

[3] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,”
Systems & Control Letters, vol. 53, pp. 65–78, 2004.

[4] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and
cooperation in networked multi-agent systems,” Proceedings of the
IEEE, vol. 95, no. 1, pp. 215–233, 2007.

[5] M. Kefayati, M. S. Talebi, B. H. Khalaj, and H. R. Rabiee, “Secure
consensus averaging in sensor networks using random offsets,” in
IEEE International Conference on Telecommunications, pp. 556–560,
2007.

[6] E. Nozari, P. Tallapragada, and J. Cortés, “Differentially private
average consensus: obstructions, trade-offs, and optimal algorithm
design,” Automatica, vol. 81, pp. 221–231, 2017.

[7] F. McSherry and K. Talwar, “Mechanism design via differential
privacy,” in IEEE Symposium on Foundations of Computer Science,
48th Annual, pp. 94–103, 2007.

[8] A. Friedman and A. Schuster, “Data mining with differential privacy,”
in Proceedings of the 16th ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 493–502, 2010.

[9] C. Dwork, “Differential privacy: A survey of results,” in International
Conference on Theory and Applications of Models of Computation,
pp. 1–19, 2008.

[10] C. Dwork, A. Roth, et al., “The algorithmic foundations of differential
privacy,” Foundations and Trends R© in Theoretical Computer Science,
vol. 9, no. 3–4, pp. 211–407, 2014.

[11] N. E. Manitara and C. N. Hadjicostis, “Privacy-preserving asymptotic
average consensus,” in European Control Conference, pp. 760–765,
2013.

[12] Y. Mo and R. M. Murray, “Privacy preserving average consensus,”
IEEE Transactions on Automatic Control, vol. 62, no. 2, pp. 753–765,
2017.

[13] F. Bullo, J. Cortés, and S. Martı́nez, Distributed Control of Robotic
Networks. Applied Mathematics Series, Princeton University Press,
2009.

[14] J. Hale, Ordinary Differential Equations. Pure and Applied Mathe-
matics - Marcel Dekker, R. E. Krieger Publishing Company, 1980.

[15] R. Hermann and A. J. Krener, “Nonlinear controllability and observ-
ability,” IEEE Transactions on Automatic Control, no. 5, pp. 728–740,
1977.

[16] E. D. Sontag, Mathematical control theory: deterministic finite dimen-
sional systems. Springer Science & Business Media, 2013.

[17] H. K. Khalil, Nonlinear Systems. Englewood Cliffs, NJ: Prentice Hall,
3 ed., 2002.


