Kia Cooperative Systems

Summer High School Outreach
Module 3

Pl: Solmaz Kia
Graduate Students: Donipolo Ghimire
Mechanical and Aerospace-Engineering Department
University of California Irvine
Summer 2021

Robots: realization of people’s dream of building intelligent machines to perform tasks.

©Solmaz Kia, UCI

Why do we care about robot motion planning?

Regardless of the form of the robots or the task it must perform, robots must maneuver through the world.
R.0.B.0.T. Comics

Motion planning is the problem of finding a robot motion from a start state to a goal state in
a cluttered environment to achieve various goals while avoiding collisions.

In its simplest form, the motion planning problem is:
how to move a robot from a “start” location to a “goal” location avoiding obstacles.

Goal

-

"HIS PATH-PLANNING MAY BE
SUB-OPTIMAL, BUT IT'S GOT FLAIR."

JBSTACLE

Obstacle

Planned

path 0
B

Start

ql (Revolute)

OBSTACLE

©Solmaz Kia, UCI

Motion Planning: Problem Formulation

The problem of motion planning can be stated as follows:

Given:

O A start pose of the robot

U A desired goal pose

.~

U A geometric description of the robot t ' I

U A geometric description of the world

Find a path that moves the robot gradually from start to goal while never touching any obstacle.

https://youtu.be/HdfAzUXvmOQ

This problem is sometimes referred to as the “move from A to B” or
the “piano movers problem”
(how do you move a complex object like a piano in an environment with lots of obstacles, like a house).

©Solmaz Kia, UCI

Motion Planning: Workspace

‘ a robot described by a moving point (that is, the robot has zero size).

pgt:al

Pstart

> A workspace W c R? or R3, often just a rectangle;
» Some obstacles 04, 05, -+, Oy;

> A start point ps;q,c and a goal point pgoq;

free workspace: Wry ., = W\ (0, U O, U ---U 0,): the set of points in W that are outside all obstacles.

©Solmaz Kia, UCI

» (-space is obtained by sliding the robot along the
edge of the obstacle regions

Workspace

Motion Planning: Configuration space

Workspace Configuration Space

Configuration Space

ARAWA
<
4

Reference point

4
»

—

©

®\Reference point @

©Solmaz Kia, UCI

K Q-space is obtained by "blowing the edge of the
obstacles up" by the robot radius

How to represent my problem in the best way possible in Python

y
| T aB
o . o@ _____
: Start
Q! :
o '
g osf -
Lo oo O
o A
Goal ------ -
>
X

A map depicting different obstacles A map depicting the obstacles fitted by polygon boundaries

Roadmaps

A roadmap is a collection of locations in the configuration space along with paths

connecting them.
* With each path, we associate a positive weight that represents a cost for

traveling along that path, for example, the path length or the travel time.
* Think of a roadmap as a weighted graph ¢ = (V,E,w), wherew is a
function that assigns the weight (e.g., path length) to each edge in E.

|V

©Solmaz Kia, UCI

Anaheim L
@)

Disneyland M“O It

gpress Villa Park
Stanton Orang:
= d’l‘l Park Act
Orange
= (@ Garden Grove &
n rth Tustif
Westminster North Tustig
Midway City Santa Ana'1c1in o
Fountain &
© Valley & N
= Irvine 4
Huntington Costa Mésa,
Beach)

Santiago

Cariyon

Silverada

Limestone,
Canyon
Regional Park

Modjes|
Canyo

Yo

Whiting Rai
Wilderre
Park

Lake Forest

F\@ ioods O
@

Crystal Cove

State Park S

= (3 Nsove
38ea

Mission Viejo Coto De Ca:

ka
n

nch
Ss

Rancho
Marg

Roadmaps

roadmap may have the following properties:

the roadmap is accessible if, for each point gstqrt € Qfree,

there is an easily computable path from gg;qr¢ to some
node in the roadmap,

similarly, the roadmap is departable if, for each point
dgoal € Qfree, there is an easily computable path from

some node in the roadmap to q 441, and

the roadmap is connectivity-preserving if, given a
connected free configuration space (i.e., any two
configurations in Q. are connected by a path in Qfyee),
then any two locations of the roadmap are connected by a
path in the roadmap,

the roadmap is efficient with factor 6 = 1 if, for any two
locations in the roadmap, say u and v, the path length
from u to v along edges of the roadmap is no longer than
6 times the length of the shortest path from u to v in the
environment

o2
=2

The notions of accessibility and departability are
not fully specified as they depend upon the notion
of “easily computable path.”

©Solmaz Kia, UCI

Motion Planning Using Visibility Graph

Visibility roadmaps: the visibility graph ¢ = (V,E,w), is defined as
i. thenodesV of the visibility graph are all the vertices of the
pOIVgonS 011 Yy On;

ii. the edges E of the visibility graph are all pairs of vertices that are
visibly connected. That is, given u, v € V, we add the edge {u, v}
to the edge set E if the straight-line segment between u and v is
not in collision with any obstacle, and

iii. the weight of an edge {u, v} is given by the length of the segment
connecting u and v.

*y

environments with polygonal obstacles.

©Solmaz Kia, UCI

Motion Planning Using Visibility Graph

Properties of visibility roadmap:
» If the free configuration space is connected, then the visibility
graph is connected, departable, and accessible.

» The shortest path from start to goal is a path in the visibility
graph. Hence, the roadmap obtained via the visibility graph is
optimally efficient, in the sense that the efficiency factor ¢ is 1.

Theorem 5.1 (Shortest paths through polygonal obstacles) Consider a configuration space with polygonal
configuration space obstacles.
Any shortest path in the free configuration space between g4, and qg44

(i) consists of only straight line segments, and

(i) has segments whose endpoints are either the start location q,.,,, the goal location q4,,;, Or an obstacle
vertex (or, more precisely, a convex obstacle vertex if start and goal locations are not non-convex vertices).

©Solmaz Kia, UCI

Dijkstra’s Shortest Path Algorithm

Mark all nodes unvisited. Create a set of all the unvisited nodes called the unvisited set.

Assign to every node a tentative distance value: set it to zero for the initial node and to infinity for all other nodes. Set the initial node
as current.

For the current node, consider all of its unvisited neighbours and calculate their tentative distances through the current node.
Compare the newly calculated tentative distance to the current assigned value and assign the smaller one. For example, if the current
node A is marked with a distance of 6, and the edge connecting it with a neighbour B has length 2, then the distance to B through A
will be 6 + 2 = 8. If B was previously marked with a distance greater than 8 then change it to 8. Otherwise, the current value will be
kept.

When we are done considering all of the unvisited neighbours of the current node, mark the current node as visited and remove it
from the unvisited set. A visited node will never be checked again.

If the destination node has been marked visited (when planning a route between two specific nodes) or if the smallest tentative
distance among the nodes in the unvisited set is infinity (when planning a complete traversal; occurs when there is no connection
between the initial node and remaining unvisited nodes), then stop. The algorithm has finished.

Otherwise, select the unvisited node that is marked with the smallest tentative distance, set it as the new "current node", and go back
to step 3.

Source:
https://en.wikipedia.org/wiki/Dijkstra%27s algorithm

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

Shortest paths in weighted graphs via Dijkstra’s algorithm

The minimum-weight path between two nodes, also called the shortest path in a weighted graph, is a path of minimum weight
between the two nodes

Unvisited
set of
nodes distance parent nodes distance parent
1 1 0 1 Find the shortest path from 1 to 7.
2 2 6 3
3 3 4 4
4 Result 4 2 1
5 5 8 6
6 6 6 8 Shortest path from 1 to 7:
1->4>3->8->6>5->7
7 7 11 5 (distance=11)
8 8 5 3

Template to implement the algorithm ©Solmaz Kia, UCI

Shortest paths in weighted graphs via Dijkstra’s algorithm

The minimum-weight path between two nodes, also called the shortest path in a weighted graph, is a path of minimum weight
between the two nodes

Dijkstra’s algorithm

Input: a weighted graph G and a start node vgn
Output: the parent pointer and dist values for each node in the graph G
// Initialization of distance and parent pointer for each node

1: for each node vin G :

2 dist(v) := 400

3 parent(v) := NONE
4: dist(Vstart) =0
5
6

: parent(vsyt) := SELF

: @ ;= set of all nodes in G
/] Main loop to grow the tree and update distance estimates extract-path algorithm
7: Whil"j Q is not er.npty - Input: a goal node vg,), and the parent values
8: find node v in @ with smallest dist(v) Output: a path from Vstan t0 Vgeal
% remove v from () 1: create an array P := [vgoal]
10: for each node w in) connected to v by an edge : 2: set U 1= Vgogy
11 if dist(w) > dist(v) + weight(v, w) : 3: while parent (u) # SELF :
12: dist(w) := dist(v) + weight(v, w) 4 u := parent(u)
13: parent(w) :=v 5 insert u at the beginning of P
14: return parent values and dist values for all nodes v 6 return P

» The shortest path tree as {parent(u), u} for each node u for which parent(u) is different from +co.
» Given a goal node vg,4; We can use the parent values to reconstruct the sequence of nodes on the shortest path from
Vstart t0 Vgoqr USINg the The extract-path algorithm.

©Solmaz Kia, UCI

Reading/Watching Assignment

Youtube videos
https://youtu.be/pViiemxhdMw
https://voutu.be/GazC3A40QTE
https://youtu.be/\WW4JhOhlfd-o

Reading:
https://brilliant.org/wiki/dijkstras-short-path-finder/
https://medium.com/@nicholas.w.swift/easy-dijkstras-pathfinding-324a51eeb0
https://en.wikipedia.ora/wiki/Dijkstra%27s_algorithm

https://youtu.be/pVfj6mxhdMw
https://youtu.be/GazC3A4OQTE
https://youtu.be/W4Jh0hlfd-o
https://brilliant.org/wiki/dijkstras-short-path-finder/
https://medium.com/@nicholas.w.swift/easy-dijkstras-pathfinding-324a51eeb0
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

Practice Problem

Find the shortest path from node 0 to all the other nodes.

Sponsors

U c Center for
Educational Partnerships

