Kia Cooperative Systems Summer High School Outreach Introduction

PI: Solmaz Kia
Graduate Student: Donipolo Ghimire
Mechanical and Aerospace Engineering Department
University of California Irvine
Summer 2021

Program's objectives

Primary Objective: Expose High School Students to How Independent Research Is Carry out in University

Secondary Objective: Introduce High School Students to Graph Theory and its Application in Robot Motion Planning

The program consists of

- Introduction to Graph Theory
- Introduction to Python Programming
- Robot Motion Planning Using Visibility Graphs
- Multi-robot Leader-Follower (if time allows)
- Observing Research Meetings

You are an independent research in this program!

These are not Graphs!

Wikipedia's definition: In mathematics, **graph theory** is the study of *graphs*, which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of *vertices* (also called *nodes* or *points*) which are connected by *edges* (also called *links* or *lines*). A distinction is made between **undirected graphs**, where edges link two vertices symmetrically, and **directed graphs**, where edges link two vertices asymmetrically.

Undirected graph (think of Facebook)

Directed graph (think of Twitter)

Application: Graphs are used to model pairwise relations between objects. Graphs provide natural abstractions for how information is shared between nodes(agents) in a network.

History: Graphs have a history dating back to 1736, when Leonhard Euler solved the "Seven Bridges of Königsberg" problem. The problem asked whether it was possible to visit all four areas of a city connected by seven bridges, while only crossing each bridge once. It wasn't.

Motion planning using visibility graphs

Problem: Given a space with known obstacles, enable a robot to move from any start point to any goal point by taking the shortest obstacle-free possible path.

Multi-robot leader follower

Python programming

- A high level multipurpose programming language
- Popular libraries (numpy, scipy, matplotlib) has made it powerful environment for scientific computing
- Google Colab: cloud platform (IDE), we will be using

https://colab.research.google.com/

Tutorial on python

- https://www.youtube.com/watch?v=rxSyXBq9zq0&list=PLIEqNdBJEO-nQkFDah-qm6UX7Cl6rCdB-&ab chan nel=TokvoEdtech
- https://www.voutube.com/watch?v=8ext9G7xspq&t=192s (Project based learning)
- https://python101.pythonlibrary.org/ (Free Textbook for Python Beginners)

Tutorial about using python in Google-colab

- https://www.youtube.com/watch?v=i-HnvsehuSw&ab channel=ProgrammingKnowledge
- https://colab.research.google.com/github/cs231n/cs231n.github.io/blob/master/python-colab.ipynb

Python programming

Jul 2021	Jul 2020	Change	Programming Language	Ratings	Change
1	1		G c	11.62%	-4.83%
2	2		<u>(</u>) Java	11.17%	-3.93%
3	3		Python	10.95%	+1.86%
4	4		G C++	8.01%	+1.80%
5	5		© C#	4.83%	-0.42%
6	6		VB Visual Basic	4.50%	-0.73%
7	7		JS JavaScript	2.71%	+0.23%
8	9	^	php PHP	2.58%	+0.68%
9	13	*	ASM Assembly language	2.40%	+1.46%
10	11	^	SQL SQL	1.53%	+0.13%
11	20	*	Classic Visual Basic	1.39%	+0.73%
12	8	*	R R	1.32%	-1.08% tiobe-index

Schedule and timelines

Program Schedule

First week (July 7-9)

Tuesday July 6: 10-11am Wednesday: 2:30-3:30pm Friday: 11:30am-12:30

Mondays: 10-11am

Wednesdays: 10-11 am

Fridays: 11:30am-12:30 pm

Graduate student group meeting and individual advisor meeting observation

Graduate student group meeting: Fridays 10:30-11:30am Individual meetings (choose 1 starting second week):

Noah: Wednesdays: 11:15-12:15 (privacy in networks and optimization)

Doni: Wednesdays 1:30-2:30 (robot motion planning)

Minwon: Tuesdays 2-3 (pedestrian localization)

Changwei: Tuesday 3-4 (pedestrian localization)

Navid: Tuesdays: 11:15-12:15 (motion planning, theoretical)

Sponsors

